Opan Goospatial Datastons Interfaca

OGDI

Programmer Reference

Revision 1.0
Version 3.0

Prepared by:

Contact: Mr. Paul Morin
Telephone: (613) 992-7666
Fax: (613) 996-3328
Internet: www.ogdi.org

Document No. OGDI-RI-98001

May 1998

© Copyright 1998 OGDI RI

OGDI - Programmer Reference

Revision 1.0 Document No. OGDI-RI-98001
DOCUMENT REVISION HISTORY
Revision Reason for Change Origin Date
1.0 Original document issued. May 1998

May 1998

© Copyright 1998 OGDI RI

Preface

Preface

The Open Geographic Datastore Interface (OGDI) isasimple C and Tcl/Tk
programming language interface that facilitates connectivity with various
geographic information data formats and/or products.

This manual addresses the following questions:

What is the Open Geographic Datastore Interface?
What features does OGDI offer?

How do applications use the interface?

How are new OGDI drivers created?

The following topics provide information about the organization of this
manual, describe the knowledge necessary to use the OGDI interface
effectively and specify the typographic conventions used.

Organization of this manual

Audience

.
4 OGDI Research Institute

This manual is divided into the following parts:

Chapter 1 Introduction to OGDI provides conceptual information about the
OGDI interface;

Chapter 2 C language API reference contains syntax and semantic
information for al OGDI functions;

Chapter 3 Tcl/Tk API reference contains syntax and semantic information
for al OGDI functions;

Chapter 4 Utility library reference contains complete information about the
various utility functions available to driver developers; and

Chapter 5 Driver Development Reference Providesinstructions for
developing a custom driver.

The OGDI software development kit is available for use with the C and
Tcl/Tk programming languages. It runs on the Microsoft Windows/NT and
Microsoft Windows/95 operating systemsaswell ascertain UNI X operating
systems. Use of the OGDI interface requires some knowledge of C and/or
Tcl/Tk programming, in addition to asound basi ¢ knowledge of Geographic
Information Systems. For information about Tcl/Tk programming, please
refer to John Ousterhout’s Tcl/Tk manual [3]. The OGDI manual assumes
you have:

» aworking knowledge of the C programming language;
» aworking knowledge of the Tcl/Tk programming language; and

 some basic knowledge about the theory of Geographic Information
Systems (GIS).

Conventions
This manual uses the following typographic conventions.

type style

MYMACRO Uppercaselettersindicate SQL statements, macro names
and terms used at the operating-system command level.

ecs GetURLList The typewriter font is used for sample command lines
and program code.

argument Italicized words indicate information that the user or the

application must provide, variable namesthat are
described in ablock of text, or smply word emphasis.

cln_CreateClient Bold type indicates that syntax must be typed exactly as
shown, including function names

[] Brackets indicate optional items.

?option? Question marks delimit optiona parameters for Tcl
procedures.

| A vertical bar separates two mutually exclusive choices
inasyntax line.

{} Bracesdelimit alist of items. ThiscanbeaTcl list, or a

set of mutually-exclusive choicesin asyntax line.

An élipsisindicates that arguments can be repeated
several times.

A column of dots indicates the continuation of previous
lines.

OGDI Research Institute Preface

Credits

The OGDI RI would liketo thank L.A.S. Inc.,(Global Geomatics) for the
bulk of the manual, SOCOMAR International for the Driver Devel opment
chapter and the rest of the OGDI Research Institute membersfor their
contributions to this manual .

.
6 OGDI Research Institute

Copyright and License

Copyright 1996 Her Majesty the Queen in Right of Canada. Permission to
use, copy, modify and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies, that both the copyright notice and this
permission notice appear in supporting documentation, and that the name of
Her Mg esty the Queen in Right of Canada not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission. Her Mgjesty the Queen in Right of Canada makes no
representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

Copyright © 1998 OGDI Research Institiute
http:/www.ogdi.org

All rights reserved.

All other brand or product names are trademarks of their
respective companies or organizations.

OGDI Research Institute Preface

.
8 O@DI Research Institute

Contents

Preface 3

Chapter 1

Chapter 2

Preface 3

Organization of this manual 4
Audience 4

Conventions 5

Credits 6

Copyright and License 7

Introduction 16

Theory of Operation 18
Components 20

Application 21

C language API 22

Tcl/Tk AP 23

Drivers 24

Network driver, gltpd, Clients and Servers
Uniform Resource Locators 26
Projection 27

Data Model 29

Basic application steps 32

C Language AP 34

How can OGDI be used in an application?
Clientld 38

Coverage and Region Selection 39
Caching 40

25

35

Contents

Result and Error Handling: ecs Result 41
ecs Object 43

ecs_(Geometry 44

ecs Region 46

ecs RagterInfo 48

C Language APl Commands 50

cln_CreateClient 51
cln_DestroyClient 52
cln_GetAttributesFormat 53
cln_GetDictionary 54
cln_GetGloba Bound 55
cln_GetNextObject 56
cln_GetObject 57
cln_GetObjectldFromCoord 58
cln_GetRasterInfo 59
cln_GetServerProjection 60
cln_LoadCache 61
cln_ReleaseCache 62
cln_Releasel ayer 63
cln_SelectLayer 64
cln_SelectRegion (OGDI) 65
cln_SetClientProjection 66
cln_SetRegionCaches 67
cln_SetServerLanguage 68
cln_SetServerProjection 69
cln_UpdateDictionary 70

Tcl/Tk API 72

Using the Extension with Tcl 73
Creating a Tcl Attribute-Callback Procedure

Tcl/Tk APl Commands 78
ecs AddAttributeFormat 79

ecs AssignTclAttributeCallback 80
ecs BackSlash 82

ecs CreateClient 83

ecs DestroyClient 85

75

ecs_GetAttributesFormat 86
ecs GetDictionary 87
ecs_GetGlobalBound 88
ecs GetNextObject 89

ecs GetObject 91
ecs_GetObjectldFromCoord 93
ecs _GetRasterInfo 94

ecs GetServerProjection 95
ecs GetURLList 96
ecs_LoadCache 97

ecs ReleaseCache 98

ecs Releasel ayer 99

ecs SelectLayer 100

ecs SetCache 101
ecs_SetClientProjection 102
ecs_SetServerLanguage 103
ecs_SetServerProjection 104
ecs_SelectRegion 105
ecs UpdateDictionary 106

Utility Library 108
Functions 111

ecs AddRasterInfoCategory 112
ecs AddText 113

ecs AdjustResult 114
ecs_CacObjectMBR 115
ecs CleanUp 116
ecs_CleanUpObject 117
ecs CopyAndCollapse 118
ecs DistanceMBR 119
ecs_DistanceObject 120
ecs_DistanceSegment 121
ecs_FindElement 122

ecs Freel ayer 124

ecs freeSplitURL 125

ecs Getl ayer 126
ecs_GetRegex 127

ecs Resultlnit 129

Contents

ecs SetError 130

ecs SetGeomArea 131
ecs_SetGeomAreaRing 132
ecs_SetGeomlimage 133

ecs SetGeomlimageWithArray 134
ecs_SetGeomLine 135
ecs_SetGeomMatrix 136

ecs SetGeomMatrixWithArray 137
ecs_SetGeomPoint 138

ecs SetGeomText 139

ecs SetGeoRegion 140

ecs SetlLayer 141
ecs_SetObjAttributeFormat 142
ecs SetObjectAttr 143
ecs_SetObjectld 144
ecs_SetRasterInfo 145

ecs SetSuccess 146

ecs SetText 147

ecs SplitList 148

ecs _SplitURL 149
EcsGetRegError 150
EcsRegComp 151
EcsRegError 152

EcsRegExec 153

C language macros 155

Chapter 7 Driver Development 158
Programming Background 159

Review of the OGDI core technology 160
Datatypes, Datastore and Layer Definition 161
The GLTP server 163
Remote Procedure Call (RPC) concept 164
External Data Representation (XDR) concept 166
Port mapper 167
Firewall/Proxy server 169

API function Overview 170

Connection operations 171
Datastore information 172

Xii Contents

Bounding operations 173
Layer operations 174
Datainformation 175
Data extraction 176
Projection operations 177
Language definition 178
Cache operations 179
Tcl/Tk specifics 180

The driver’'s components 181

Ecs Server structure 182
The ecs Layer structure 184
The LayerMethod structure 185
Driver description 187
Driver'sfilesinteractions 189

Driver’s programming step by step 190
(Step 1) Use the skeleton driver 191
(Step 2) Code the driver's function 192

(Step 3) Code the datastore function library 193
(Step 4) Codethe Layer oriented-functions 194

Appendix A Implementation Specification 196

ecs Result 198

ecs Compression 200
ecs_ResultUnion 201

ecs Object 202

ecs Region 203
ecs_ObjectAttributeFormat 205
ecs Rasterinfo 206
ecs_Category 207
ecs_Geometry 208

ecs Area 209
ecs_FeatureRing 210
ecs Line 211
ecs_Point 212

ecs Text 213
ecs Node 214
ecs Edge 215
ecs AreaPrim 216

.
.
Contents :xi ii

ecs Face 217
ecs_Coordinate 218
ecs _Matrix 219
ecs_Image 220

Appendix B Tables 222
Appendix C Datum change of the OGDI 227

Appendix D BIBLIOGRAPHY 229

Xiv Contents

Chapter 1 Introduction

16

Introduction

One of the main problems with today’s Geographic Information Systems
(GIS) is converting and integrating geospatial data. Very often, GIS

devel opers need to import geospatial datafrom different sources, which has
proven to be both difficult and time consuming. Industry experts believe that
60% to 85% of thetotal cost of implementing aGIS can be attributed to data
conversion. Geospatial data products are offered in alarge variety of
different and incompatible formats. For example, there are avariety of
different coordinate systems and cartographic projections. Furthermore,
each GIS software vendor integrates its geospatial data uniquely into its
software and therefore, suppliers must typically develop versions of
geospatial data products for several software packages.

The GIS industry cannot expect sustained growth until the problem of
Incompatible datais significantly reduced. Considering the scope and
complexity of geospatia data management, the industry cannot expect that
this problem will be easily resolved. Part of the problem is that both tools
and datafile sizes are very large compared to other information systems
such as word processing programs or spreadsheets.

Geospatial dataformat standardization is one solution to this problem.
Efforts have recently been undertaken to minimize the number of geospatial
data formats in the marketplace. The Spatial Data Transfer Specifications
(SDTS), the Digital Geographic information Exchange STandard
(DIGEST) and the ISO TC/211 committee on geographic information are
examplesof thistrend. However, it ishighly unlikely that the industry will
move to asingle standard. It is probable that there will be at least a half-
dozen important standardsin addition to all the proprietary commercial data
products aready gaining momentum in the marketplace. This means that
standardization efforts alone won't solve the geospatial data
conversion/integration problem.

OGDI offers a solution expected to boost and accel erate standardization
efforts.

OGDI is an application programming interface (API) that uses a
standardized access method to work in conjunction with GIS software
packages (the application) and various geospatia dataproducts. OGDI uses

Chapter 1 OGDI Research Institute

aclient/server architectureto facilitate the dissemination of geospatial data
products over any TCP/IP network, and a driver-oriented approach to
facilitate accessto several geospatial data products/formats.

OGDI provides a solution for some of the most difficult geospatial data
Integration problems. These solutions include:

* converting various formats into a uniform transient data structure;

* adjusting coordinate systems and cartographic projections;

* retrieving geometric and attribute data;

* accessing agrowing number of geospatial data productsand formats; and

» making use of the Internet as a medium to distribute geospatial data
products.

OGDI was developed to offer maximal flexibility. GI'S developers can use
this API to make their application compatible with the large number of
geospatial dataformatsand productsavailable onthe market. Similarly, data
providers can easily build new "drivers” for their own formats so that
applications using OGDI can accesstheir datasets directly. Driversare
currently being developed for DIGEST Vector Relational Format
(VRF/VPF) products, DIGEST Raster products (ADRG) and DIGEST
Matrix products (DTED). Driverswill later be developed for CADRG
products, GeoTIFF, STDS formats, ARC/INFO coverages, Autocad DWG
and DXF, Intergraph DGN, USGS DLG-3, Mapinfo MID/MIF and others.

The APIs are available for UNIX operating systems (such as Solaris and
Linux) and for Microsoft's Windows NT and Windows 95 operating
systems. OGDI is offered as freeware, the only restrictions being those
found in the copyright notice in the Preface of this guide.

OGDI Research Institute

18

Chapter 1

Theory of Operation
The OGDI interface includes the following features:

« alibrary of functionsthat allow an application to connect to any
geographic datastore (geospatial data product or format) and retrieve its
contents regardless of its nature;

* ameansto connect to aremote geographic datastore through the Internet
or any TCP/IP network; and

» auniform transient data structure to describe and retrieve geographic
information.

The OGDI interface is open and highly flexible. The same object code can
be used to access different geographic datastores (geographic information
exchange formats or geographic products) without having to recompile
using the"plug & play driver” concept. Applicationsusing OGDI canignore
underlying data communication protocols between themselves and the
datastore because datavalues are retrieved in a convenient and uniform
transient data structure regardless of the source. Datastores can be accessed
locally or remotely using a concept similar to that of the World Wide Web.

Application
T ar T

/ Interface

C Interface ‘
Remote Procedure Call
Direct
Procedure Network
Call Driver
TCP/IP
Network

gltpd

/

Driver

OGDI Research Institute

The interface providesthe following three types of function calls:

a low-level C language API;
a high-level Tcl/Tk scripting language API; and
a library of C language utility functions to facilitate driver development.

OGDI Research Institute

19

20

Chapter 1

Components
The OGDI architecture includes the following six components:

Application an applicationthat performsprocessing, callsfunctionsthrough
the C APl or Tcl/Tk API and retrieves results;

Tcl/Tk APl aTcl/Tk extension to access OGDI facilities;

C language API adynamically-loadable C language library used to access
OGDI facilities;

Drivers adynamically-loadable library used to access various geospatial
data formats;

Network Driver aspecia driver that allows remote access to external
geospatial data drivers; and

gltpd asmall application that links the remote driver to external geospatial
data drivers through the Internet.

FIGURE 1. “OGDI's basic architecture” shows OGDI's basic architecture.

The following sections describe each component in more detail.

FIGURE 1. OGDI’sbasic architecture

OGDI Research Institute

Application
An application using the OGDI interface performs the following tasks:

requests a connection with a geospatia data source;

sends requests to the data source. These requests can be directed to
specific geospatial data coverages and/or to specific geographic
subregions,

defines storage areas and data formats for the results of these requests;

processes the results of the requests (performs spatial analysis or
visualization);

processes errors; and
terminates the connection to the data source.

OGDI was developed mainly for GIS software vendors, but can be used in
any application where GIS dataretrieval isrequired.

OGDI Research Institute

21

22

Chapter 1

C language API

The C language AP isthe heart of OGDI. It is adynamically-loadable
library that C programmers can useto access OGDI facilities. Itiscomposed
of 22 functions that perform the following actions:

manage and load the geospatial data driver;

provide an entry point to OGDI functions for each driver;
allocate storage for geometric and attribute data;

perform "garbage collection” of previously allocated storage;

provide parameter validation and sequence vaidation for OGDI cdlls;
and

make all necessary coordinate and cartographic projection
transformations.

See Chapter 2 C language API, on page 33, for afull description of the
functions available using using this API.

OGDI Research Institute

Tcl/Tk API

The OGDI API can also be accessed using the Tcl/Tk scripting language.
The Tcl/Tk interface can be used for rapid prototyping of new ideas and for
testing purposes. OGDI was conceived asa Tcl/Tk extension. All 22
functions of the C language API are mapped into Tcl commands. Each
command isinvoked using the data structures of Tcl lists and returns either
alist or an associative array as aresullt.

The Tcl API isadynamically-loadable library that can easily be linked to a
Tcl interpreter in the same way as other available Tcl extensions.

See John Ousterhout’s Tcl/Tk Manual for moreinformation about the Tcl/Tk
scripting language. See Chapter 4 Tcl/Tk API, on page 71, for afull
description of the functions available in this API.

Step 1. Network Driver requests connection to gltpd

network driver e gltpd

Step 2. gltpd creates a new thread (or fork) of itself

networkdriver L g gltpd

L» new gltpd

Step 3. new gltpd takes over communication and loads driver

network driver gltpd

\ —

1

driver

OGDI Research Institute

24

Chapter 1

Drivers

A driver isadynamically-loadable library that processes C language API
requests for a specific datastore. Once adriver isloaded, it receives
requests, fetchesinformation from the datastore, trandates it into auniform
transient data structure and returns the results to the application.

Drivers are dynamically loaded at run time by the C language API. In this
manual, theterm " establishing aconnection” isused to describe thisprocess.
Furthermore, the word "client” is used to describe each instance of a
connection.

OGDI Research Institute

Network driver, gltpd, Clients and Servers

The gltpd isasmall utility program that mimics the behavior of the C
language API on aremote computer. The network driver isa special
dynamically-loadable library that relays calls from the C API to agltpd
process running on aremote computer. The gltpd and the network driver are
used together to link the application to a remote driver through a TCP/IP
(Internet) network. The gltpd allows the application programmer to access
remote drivers asif they werelocal driversusing aclient/server paradigm.

When the gltpd receivesitsfirst request from an application, it createsanew
thread (afork). That new thread |oads the requested driver type, takes
control of the communication processwith the network driver and servesall
subsequent OGDI calls coming from the application. The combination of
the gltpd and a specific driver becomes a server to the client (i.e.: the
application’s connection).

FIGURE 2. “How a network driver connects with the gltpd” shows how a
network driver connects with the gltpd.

FIGURE 2. How a network driver connectswith the gltpd

For a programmer using OGDI, there is no difference between a local and a
remote driver. The gltpd and the network driver transparently handle the
communication protocol and automatically provide data transformation
between incompatible processor architectures. In the current
implementation, the gltpd and the network driver are based on the ONC
RPC 4.0 protocol.

To standardize vocabulary, the term client is used to describe a connection
made by an application and the term server is used to describe an instance
of one driver connected to one application.

OGDI Research Institute

25

26

Chapter 1

Uniform Resource Locators

Each connection between the application (i.e. aclient) and adriver (i.e. a
server) isdefined by an ASCII string similar to the World Wide Web's
Uniform Resource Locators (URLS).

Each string is prefixed with the word gltp (analogous to URL prefixes like
http or ftp). The prefix is followed by a hosthame for remote driver access,
adriver descriptor and then afile pathname that indicates the location of the
datastore. The hostname is not used when accessing alocal datastore.

gl tp:[//<hostname>]/<nane of driver>/<pat hname>
The presence of the hostname string indicates that a connection to aremote
driver using gltpd is being made.
The following are afew examples of connection strings:
gltp://copernic.las.conlfgrass/|las3/gis/spearfish/ PERVANENT
Describes a GRASS datastore named /1as3/gis/spearfis PERMANENT
located on the host computer copernic.las.com.
gltp://jupiter.drev.dnd.cal/vrf/cdronm dcw noaner
Describes a DIGEST-V RF datastore named /cdrom/dcw/noamer located on
the host computer jupiter.drev.dnd.ca
gl tp:/vrf/cdrom dcw noaner
Describes a DIGEST-V RF datastore named /cdrom/dcw/noamer located on
aloca host computer.
gl tp:/grass/ C /spearfish/ PERVANENT

Describes a GRASS datastore in the directory C:/spearfisy PERMANENT
on a machine running Windows 95 or Windows NT.

OGDI Research Institute

Projection

The projection descriptor is astring that defines the server or client
cartographic projection. If required, information retrieved from the server is
transformed to the projection of the client. Arguments and parameters
defined in the descriptor vary according to the projection selected and
references should be made to specific projection documentation.

Optionsare processed from left to right, and re-entry of an optionisignored.

+proj=name isrequired for the selection of the cartographic transformation
and the nameisan acronym for the desired projection. Projection acronyms
aredefinedin TABLE 1.“list of all valid projection acronyms” on page 222.

+R=R specifies that the projection should be computed as a spherical Earth
with a radius corresponding to the numeric value you enter in this field.

+ellps=acronym selects standard, predefined ellipsoid figures. For
spherical-only projections, the major axis is used as the radius. Valid
ellipsoids are listed in TABLE 2.“list of valid ellipsoids” on page 224.

+a=a defines an elliptical Earth's major axis.

+es=e defines an elliptical Earth's squared eccentricity. Optionally, +b=Db,
+e=e, +rf=1/f or +f=f can be used whereb, e and f are minor axes,
representing eccentricity and flattening, respectively.

+R_A must be used with elliptical Earth parameters. It specifies that
spherical computations be used with the radius of a sphere that has a surface
area equivalent to the selected ellipsoid.

+R_V can be used in a similar manner to calculate the sphere radius of an
ellipse of equivalent volume.

+R_a must be used with elliptical Earth parameters. The spherical radius of
the arithmetic mean of the major and the minor axes isused. +R_gand +R_h
can be used for the equivalent geometric or harmonic mean of the major and
minor axes.

+R_lat_a=o must be used with elliptical Earth parameters. The spherical
radius of the arithmetic mean of the principal radii of the ellipsoid at latitude
0 is used.

OGDI Research Institute

27

28

Chapter 1

+R_lat_g=0 can be used for equivalent geometric means of the principle
radii.
+x_0=x specifiesfalse easting; the value entered is added to the x value of

the Cartesian coordinate. Thisisusedin grid systemsto avoid negative grid
coordinates.

+y_0=y specifiesfa se northing; the value entered isadded to the y val ue of
the Cartesian coordinate. Thisisused in grid systemsto avoid negative grid
coordinates.

+lon_0=I specifiesthe central meridian. Along with +lat_0=l, it normally
determines the geographic origin of the projection.

+lat_0=I specifiesthe central parallel. See +lon _0=l.

+units=name allowsyou to select the unit of measurement to which the
Cartesian coordinates will be converted. Valid units are listed in TABLE
3.“list of valid units” on page 226.

+geoc When this option is selected, it specifies that geographic data
coordinates are to be treated as geocentric.

+over inhibits the reduction of input longitude to a range between -180
degrees and +180 degrees of the central meridian.

+zone=n is used for UTM and MTM zone selection.

OGDI Research Institute

Data Model
The OGDI data model can currently handle two types of geographic data:

Vector Data Which are composed of 4 subtypes of features (and divided
into 3 subtypes of primitiveswhich are not yet implemented):

Line Features;

Area Features (each composed of one or more rings);

Point Features; and

A WODN P

Text Features.

Matrix Data (Rasters) for information pertaining to points at regularly
identified intervals. Thisdatamodel islargely inspired by the DIGEST data
model.

Each feature (and primitive) has a corresponding C data structure used by
the C language API and by al servers. In addition, OGDI uses a number of
supporting C data structures to describe geographic regions, attribute
formats, raster meta-data and others. The following section describes the
most important structures. All other structuresare describedin C Language
API Commands, on page 50.

Line Feature
Linefeatures are composed of two or more coordinates. Line features must
be homogenous in direction.

struct ecs_Line {
struct {
uint c_len;
ecs_Coordi nate *c_val;

}c

The ¢_len variable indicates the number of coordinates that describe this
linear feature. Each coordinate ¢_val is defined by the following C sub-
structure:

struct ecs_Coordinate {
doubl e x;

OGDI Research Institute

30

doubl e v;
b

typedef struct ecs_Coordinate ecs_Coordinate;

The current model can only support 2 dimensional vector representation.

Area Feature

Areafeatures are composed of one or more rings. Rings are similar to line
features except that the last coordinateisalways equa to thefirst. Each area
feature can be composed of severa rings.

struct ecs_FeatureRi ng {
ecs_Coordi nate centroid;
struct {
uint c_len;
ecs_Coordi nate *c_val ;
1
b

typedef struct ecs_FeatureRing ecs_FeatureRing;

struct ecs_Area {
struct {
u_int ring_len;
ecs_FeatureRing *ring_val;
} ring;

Point Feature
Point features are composed of a single instance of ecs_Coordinate.

struct ecs_Point {
ecs_Coordi nate c;

Text Feature

Text features are similar to Point features except for the fact that they also
hold atext string.

struct ecs_Text {

OGDI Research Institute

char *desc;
ecs_Coordinate c;

Matrix Feature

Matrices (rasters) are accessed on aline-by-line basis. Each raster lineis
described as follows:

struct ecs_Matrix {
struct {
u_int x_len;
u_int *x val;

}ox

Geographic Region
The following data structure is used to delimit a geographic region of
interest:

struct ecs_Region {
doubl e north;
doubl e sout h;
doubl e east;
doubl e west;
doubl e ns_res;
doubl e ew res;

The north, south, east, west parameters are used to geographically delimit
theregion. ns_resand ew_res are used to specify the target resolution for
matrix coverages.

OGDI Research Institute

32

Basic application steps

Tointeract with adatastore, asimple application goesthrough the following
steps:

Establish a connection (i.e.: create a client).
Select a geographic region.

Select alayer (coverage).

Extract objects sequentially or randomly.
Process the results.

Terminate the connection.

FIGURE 3. “Basic OGDI application steps” lists OGDI function calls that
an application makes to connect to a client, select a layer (coverage), select
a geographic region, retrieve objects and disconnect from the client.

‘ Application

\—

4
Tcl/Tk

Interface I
~ 4

A 4

C Interface I
T

Procedure Call .
D S

Direct Procedure Callg

Driver

N

FIGURE 3. Basic OGDI application steps

Chapter 1 OGDI Research Institute

Chapter 2 Clanguage API

34

C Language API

Chapter 2

This chapter explains how to use the OGDI API in real applications. The
chapter is divided into two sections. The first section presents an example
of how to use the OGDI library, and the second section describes all the
available commands.

OGDI Research Institute

How can OGDI be used in an application?

The underlying philosophy of OGDI isto encapsulate all thetasksrelated to
geographical database accessin asimple and standard API. With OGDI, an
application isshielded from the details of integrating a new kind of
datastore. Thetask of navigating adatastore fallsto the drivers themselves,
and the C API providesauniformway of retrieving information from these
driversregardless of the datastore format.

The following is an example of an application using OGDI to access
geographical information:

#i ncl ude "ecs. h"

char url[] = "gltp:/grass/c:/spearfish/ PERMANENT";
char layer[] = "roads@ERVANENT";

mai n()
{
int dientlD

ecs_Result *result;
ecs_Regi on sel ecti onRegi on;
ecs_Layer Sel ecti on sel ectionLayer;

/* Oreate aclient with ientlD as a reference */

result = cln_Createdient(&dientIDurl);

/* The user nust set a region value in the client geographic projection

*/

sel ecti onRegi on.
sel ecti onRegi on.

sel ecti onRegi on

sel ecti onRegi on.
sel ecti onRegi on.
sel ecti onRegi on.

north = 4928000. 0;

4914000. 0;

sout h

.east = 609000. 0;

west 590000. 0;
ns_res = 50.0;

ew res = 50.0;

result = cln_Sel ect Regi on(CientlD, &el ecti onRegi on);

/* Define the layer to select */

OGDI Research Institute

36

Chapter 2

sel ectionLayer. Sel ect = (char *) |ayer;
sel ectionLayer. F = Line;
result = cln_Sel ectLayer(dientlD, &el ectionlLayer);

/* The application processes the result of cln_Sel ectLayer.*/

result = cln_GetNextoject(CientlD;
whi | e (ECSSUCCESS(result)) {

}

result = cln_GetNextQbject(CientlD);

result = cln_Rel easeLayer(dientlD, &el ectionLayer);
result = cln_DestroyCient(CientlD);

return O;

This sample program is simple; it does not check for errors on the
information returned by the API. A regular program would have to check
whether ecs Result containsinformation on whether the last command was
successful or unsuccessful. (See Result and Error Handling: ecs_Result, on
page 41 for more information on interpreting ecs Result.) However, this
example does provide a general overview of the various available
commands.

To make a connection, call the cln_CreateClient function using a URL
specified by the character string url. This createsanew client with the
handle Clientld (see Clientld, on page 38). In the above example, theresult
isnot used, but normally it should be parsed to determine whether an error
has occurred.

The program then selects a coverage using the cin_SelectLayer command,
gathers all the geographical objectsin this coverage and terminates the
session with this client. In this example only one client is open, but the
application can open up to 32 clients simultaneously.

The client has an associated geographic projection and all datareturnedisin
that projection. When the client is created, it is set by default to the same
projection as that of the driver database. This example does not override
the default projection, but it is possible to do this using the
cln_SetClientProjection command.

OGDI Research Institute

The cln_SelectRegion command defines the boundaries of a geographical
region within the datastore. This command alows the programmer to
delimit an area with which subsequent commands will work. (See
Coverage and Region Selection, on page 39).

All applicationsusing OGDI must includethefile ecs.h. Thisfile containsa
prototype of all the commands, structure definitions and macros of OGDI.
To compileand link an application program with OGDI, only theecs library
Isrequired (ecs.dll on Windows and libecs.so on UNIX). Theecsutil library,
which contains some useful commands and macros, is optional.

OGDI Research Institute

37

38

Chapter 2

Clientld

Each client isuniquely identified by a Clientld. ThisID isthe handleto a
datastorethat al other APl commandsuse. Itisaninteger whichisinitialy
assigned during the call to thecln_CreateClient command. The Clientld can
also be retrieved for an existing client by passing theclient'sURL as achar
* to cIn_GetClientldFromURL. A Clientld isreleased when aclient is
deleted, and may then be re-used by another client.

OGDI Research Institute

Coverage and Region Selection

Many APl commands work only on datawhich iswithin a"Selected
Region” and/or "Selected Coverage’. Geographic objects are always
located within the currently selected region. For example, the
cln_GetNextObject command doesnot return any valuesthat lie completely
outside the region previoudly set by the cln_SelectRegion command. If no
region was explicitly set, the default " Selected Region” is the global region
occupied by the datastore.

"Selected Coverage” defines the layer upon which subsequent calls to
coverage-oriented commands act. For example, the cln_GetNextObject
command only retrieves objects within the layer that is specified by the
cln_SelectLayer command. If no layer is selected, thereis no default. A
layer which is selected remains the current selection until the
cln_SelectLayer command is used again with a new coverage, or until the
cln_Releasel ayer command has released it.

OGDI Research Institute

39

40

Chapter 2

Caching

The purpose of the cache is to minimize the time required to access data.
Thisis useful in situations where the transfer of datafrom a datastore is
slow.

The cacheisalocally held copy of asubset of a datastore. It hasa
geographical region which is set by the cln_SetRegionCaches command,
and any number of layers may be cached within this region using the
cln_LoadCache command. Any calls which retrieve data from this region
first examine the cache to see whether the datais already stored there. If the
required dataiis not found in the cache, it is retrieved from the datastore as
usual.

Layersarereleased individually from the cache using the cln_ReleaseCache
command.

OGDI Research Institute

Result and Error Handling: ecs_Result

To facilitate error and message handling, there is alarge static structure
caledecs Result, whichisusedto storetheresultsof callstotheC interface.
The header isfound in the hierarchy under ecs.h. (For an example of how
ecs Result can be processed, refer to the file ecs tcl.c. Thisfileincludes
code to parse ecs_Result and return it to the Tcl interpreter).

Thetop level of this result-reporting structure is the following:

enum ecs_Resul t Type {
bject =1,
GeoRegi on = 2,
obj AttributeFormat = 3,
Rasterlnfo = 4,
AText =5
¥
typedef enum ecs_Resul t Type ecs_Resul t Type;

struct ecs_Resul t Union {
ecs_Resul t Type type;
uni on {
ecs_(hj ect dob;
ecs_Region gr;
ecs_Ooj Attri but eFor mat oaf;
ecs_Rasterinfo ri;
char *s;
} ecs_Resul t Union_u;
¥
typedef struct ecs_ResultUnion ecs_Result Union;

struct ecs_Result {
int error;
char *nessage;
ecs_Resul t Uni on res;
b

typedef struct ecs_Result ecs_Result;

OGDI Research Institute

42

Chapter 2

Almost all callsto the C interface return a pointer to the ecs Result
structure. Inall cases, where an error occurs, ecs_Result->error isequal to
0 (i.e. ECS_SUCCESS) or has anon-zero value. If thereisan error, a
human-readable message is returned in ecs_Result->message. Otherwise,
ecs_Result->ecs ResultUnionisset to contain the result from the command
cdl.

ecs Result->ecs ResultUnion contains one of a number of different types
of objects, depending on the type of vaue returned. ecs ResultUnion.type
indicatesthetype of result that isbeing returned, and includes another union
containing the result itself. In many cases no extrainformation is returned,
so the typeisnot among the enumerated type ecs ResultType. The result
may a so be asimple character string, which is pointed to by s.

Since the driver isalowed to return an undefined code in ecs Result, it is
essential to ensure that any code which expectsan AText ecs ResultTypeis
able to handle an undefined ecs ResultType, and vice versa. For example,
inthe Tcl interface code, whenever an undefined ecs ResultTypeis
encountered, thestring "OK” isreturned by default. However, if an AText
result message is encountered, the result-processing codeis still able to
return the proper character string.

OGDI Research Institute

ecs_Object

When ecs_Result returns an object, the object is contained in the following
set of structures:

struct ecs_Geonetry {
ecs_Fanily famly;
uni on {
ecs_Area area;
ecs_Line line;
ecs_Poi nt point;
ecs_Matrix matrix;
ecs_| mage i mage;
ecs_Text text;
ecs_Node node;
ecs_Edge edge;
ecs_AreaPrimring;
} ecs_Geonetry_u;
b

typedef struct ecs_Geonmetry ecs_Ceonetry;

struct ecs_Qhject {
char *Ild;
ecs_GCeometry geom
char *attr;
doubl e xm n;
doubl e ymi n;
doubl e xnmax;
doubl e ymax;

b

typedef struct ecs_Object ecs_(bject;

ecs_Object contains a character string Id, which uniquely identifiesthis
object. ecs Geometry describes the geometry specific to the type of object,
and *attrreturns a pointer to a string describing the attributes of the object.
The bounding rectangle is defined by the remaining ecs_Object parameters.

OGDI Research Institute

44

Chapter 2

ecs_Geometry

To interpret an ecs Geometry structure it is necessary to examine the
contentsof theenumerated typeecs Geometry.family, and theninterpret the
corresponding type. For example, if thefamily isset to Area, you know that
the ecs Geometry.ecs Geometry uisanecs Area. For more information
on these types, refer to section data-model.

Thefollowing isalist of typesthat can be returned within ecs Geometry:

struct ecs_Coordinate {
doubl e x;
doubl e vy;

¥

typedef struct ecs_Coordinate ecs_Coordinate;

struct ecs_FeatureRi ng {
ecs_Coordi nate centroid;
struct {
u_int c_len;
ecs_Coordi nate *c_val;
}oc
¥

typedef struct ecs_FeatureRing ecs_Feat ureRing;

struct ecs_Area {
struct {
u_int ring_len;
ecs_FeatureRing *ring_val;
} ring;
¥

typedef struct ecs_Area ecs_Area;

An areais constructed of ring_lenringsinan array ring_val. A ring hasa
centroid and an array of coordinates. For example:

struct ecs_Line {
struct {
u_int c_len;
ecs_Coordinate *c_val;

OGDI Research Institute

}c
b

typedef struct ecs_Line ecs_Line;

struct ecs_Point {
ecs_Coordinate c;
b

typedef struct ecs_Point ecs_Point;

Points contain only a single coordinate, while lines contain an array of
ecs_Coordinates of length c_val.

struct ecs_Matrix {
struct {
u_int x_len;
u_int *x val;
Px
¥

typedef struct ecs_Matrix ecs_Matrix;

struct ecs_l mage {
struct {
u_int x_len;
u_int *x_val;
}ox
¥

typedef struct ecs_|lnmage ecs_| mage;

struct ecs_Text {
char *desc;
ecs_Coordi nate c;
b

typedef struct ecs_Text ecs_Text;

Matrices and images each contain alist of datain the form of a one-
dimensional array with length x_len. Text coverages include a coordinate
plus astring.

OGDI Research Institute 45

46

Chapter 2

ecs_Region

A region is described by its delimiting values plus an east-west and north-
south resolution. For example:

struct ecs_Region {
doubl e north;
doubl e sout h;
doubl e east;
doubl e west;
doubl e ns_res;
doubl e ew res;

b

typedef struct ecs_Regi on ecs_Region;
ecs_Qoj Attri but eFor nat

enum ecs_Attri but eFormat {

Char = 1,
Varchar = 2,
Longvarchar = 3,
Deci mal = 4,
Nuneric = 5,
Smal lint = 6,

I nteger =7,
Real = 8,

Float = 9,

Doubl e = 10

b

typedef enumecs_AttributeFornmat ecs_AttributeFormat;

struct ecs_Qbj Attribute {
char *nane;
ecs_AttributeFormat type;
int |length;
int precision;
int nullable;
b
typedef struct ecs_QbjAttribute ecs_Obj Attribute;

OGDI Research Institute

struct ecs_Chj AttributeFormat {
struct {
u_int oa len;
ecs_(oj Attribute *oa_val;
} oa;
b
typedef struct ecs_ChjAttributeFormat ecs_Chj Attribut eFormat;

Usually more than one attribute is returned in ecs_Result. Within this
structure,ecs_ObjectAttributeFormat contains an array of attribute format
descriptionsin the form of ecs ObjAttributeFormat structures. Thisarray
hasthe length oa_len. Each attribute hasa type (e.g. achar), afield length
and aprecision (if applicable). Thisvalue may also be nullable.

OGDI Research Institute

47

48

Chapter 2

ecs_Rasterinfo

struct ecs_Category {

| ong no_cat;
uint r;
u_int g;
uint b;
char *Iabel;
u_long qty;

b

typedef struct ecs_Category ecs_Category;

struct ecs_Rasterinfo {
| ong mncat;
| ong maxcat;
int wdth;
i nt height;
struct {
u_int cat_len;
ecs_Category *cat_val;
} cat;
¥

typedef struct ecs_Rasterlnfo ecs_Rasterlnfo;

ecs_RasterInfo returns meta information related to the currently selected
raster file. The categoriesrange from mincat to maxcat, and the raster itself
isaone-dimensional array which can fit into an area with width width and
height height.

Each category hasits own identifying number no_cat, aswell as red, green
and blue values. The category is also described by alabel and a quantity.

OGDI Research Institute

Chapter 3 C Language APl Commands

C Language APl Commands

This chapter explains the functions availablein the C
API that can beused by developersat the programming
level.

50 o Chapter 3 OGDI Research Institute

cln_CreateClient

NAME

cIn_CreateClient creates aclient (connects to a geographic datastore).
SYNOPSIS

ecs_Result *cln_Oreatedient(Returnedl D, URL) [4]
int *Returnedl D;
char *URL;

ARGUMENTS

ReturnedID istheidentifier number of anew client. Thisisthe handle used
by al other commands of the API.

URL thisisthe string used to create a new server.
DESCRIPTION

Thiscommand createsaclient and loadsthe proper driver. Thedriver inturn
connectsto the geographic datastoreidentified by the URL. Thiscommand
isalways called before any data can be retrieved from a database.

In the case of aremote driver, the gitpd must already be running at the
location pointed to by the URL.

By default, a newly-created client points to the server projection.

Thiscommand can also be used to ensurethat an existing clientisstill valid.
If you try to open aclient that is already open, the previous client’s number
Isreturned asif it had been re-opened or an error message is displayed;
however, the state of the connection is not affected.

OGDI Research Institute

52

Chapter 3

cln_DestroyClient
NAME

cln_DestroyClient deletes aclient and unloads the associated driver from
memory. This terminates the communication with the geographic
datastore.

SYNOPSIS

ecs_Result *cln_Destroydient(CientlD)
int dientlD

ARGUMENTS
ClientID istheclient identifier.
DESCRIPTION

This command deletes a client and disconnects the interface to the
geographic datastore. It aso unloads the associated driver from memory.

If successful, this command returns an error code in ecs_Result->error;
however, no message is returned in ecs_ResultUnion. The unsuccessful
destruction of aclient returns a non-zero value inecs_Result->error and a
human-readable error message in ecs _Result->message.

SEE ALSO
cln_CreateClient, cln_CreateClient_ OGDI

OGDI Research Institute

cln_GetAttributesFormat
NAME

cIn_GetAttributesFormat specifies the attribute format of the currently
selected layer.

SYNOPSIS

ecs_Result *CetAttributesFornat(CientlD)

int CientlD,

ARGUMENTS
ClientID istheclient identifier.
DESCRIPTION

This command returns alist that describes all the attributes of the currently
selected coverage, based on the last selection made with
theecs SelectL ayercommand.

If successful, an array of ecs ObjAttributesis returned in ecs Result. (See
Appendix A, “" on page 2050r more information.)

Unlike the ecs_GetAttributesFormat command, if thereisa Tcl callback
procedure registered for this URL via OGDI’s Tcl interface, it is not
executed. TheC interfaceiscompletely independent from Tcl and does not
take into account whether a Tcl callback procedure has been registered.

SEE ALSO
cln_SelectLayer, cln_SelectRegion

OGDI Research Institute

54

Chapter 3

cln_GetDictionary
NAME

cIn_GetDictionary retrievesan [incr Tcl] applet from the driver. The applet
describes the contents of a geographic datastore.

SYNOPSIS

ecs_Result *cln_GetDictionary(CientlD

int dientlD

ARGUMENTS
ClientID istheclient identifier.

DESCRIPTION

This command returns a char * containing a Tcl list of two elements. The
first is the declaration of the dictionary in theformitcl_class class_name.
Thesecondisan [incr Tcl] classdefinition (under itcl 1.5) that describesthe
contents of the datastore at the driver’s end.

EXAMPLE

cln_GetDictionary

SEE ALSO

cln_SelectLayer, cln_UpdateDictionary, cln_GetDictionary

OGDI Research Institute

cln_GetGlobalBound
NAME
cln_GetGlobalBound specifiesthe driver's global geographic region.
SYNOPSIS
ecs_Result *cl n_Getd obal Bound(d i ent| D)
int dientlD
ARGUMENTS
ClientID istheclient identifier.
DESCRIPTION

This command returns the server’s global geographic region. The returned
vaueisan ecs Region inside ecs Result (refer to section ecs _region for
more information). This command is used to return the global bounding
rectangle of a datastore.

OGDI Research Institute

55

56

Chapter 3

cln_GetNextObject
NAME

cIn_GetNextObject specifies the next object in the currently-sel ected
coverage.

SYNOPSIS

ecs_Result *cln_GetNexthject(CientlD

int dientlD

ARGUMENTS
ClientID istheclient identifier.
DESCRIPTION

This command returns the next geometric object that is either partially or
totally contained within the current geographic region of the currently-
selected coverage.

If successful, anecs Object structureisreturnedinecs Result depending on
the type of object that is selected. (see ecs Object, on page 43 for details).

SEEALSO
cln_SelectRegion, cIn_SelectLayer

OGDI Research Institute

cln_GetObject

NAME

cIn_GetObject specifiesthe attributes of the selected geometric object.
SYNOPSIS

ecs_Result *cln_GetChject(dientIDid)

int dientlD

char *id;
ARGUMENTS
ClientID isthe client identifier.
Id isthe object identifier.
DESCRIPTION

This command returns the attributes of the geometric objectid. If
successful, an ecs_Object of some sort isreturned inecs Result depending
on the type of object that is selected. (See ecs Object, on page 43 for
details)

If thereisaTcl callback procedure registered at the Tcl level of the OGDI
interface, it is not called from this procedure.

SEEALSO
cln_GetAttributesFormat, cln_SelectL ayer

OGDI Research Institute

58

Chapter 3

cln_GetObjectldFromCoord
NAME

cIn_GetObjectldFromCoord retrieves the object in the currently-sel ected
layer that is nearest to the set of specified coordinates.

SYNOPSIS
ecs_Result *cl n_Get Chj ect!ldFronCoord(dient|ID, coord)
int dientlD
ecs_Coordi nate *coord;
ARGUMENTS
ClientID istheclient identifier.
coord arethe coordinates.

DESCRIPTION

This command returns the ID of the geometric object that is closest to the
geographic location(x,y) in the currently selected coverage. This command
only returnsan Id if the (x,y) coordinateisentirely withina valid area. If a
cache existsfor thislayer, the datais selected directly from the cache rather
than from the datastore.

If successful, the Idisreturned as an AText field within the ecs Result (See
Result and Error Handling: ecs Result, on page 41).

SEEALSO
cln_SelectLayer, cin_GetObject

OGDI Research Institute

cln_GetRasterInfo
NAME

cIn_GetRasterInfo gathersinformation on the currently-selected raster
coverage.

SYNOPSIS

ecs_Result *cln_GetRasterInfo(CientlD)
int dientlD

ARGUMENTS
ClientID istheclient identifier.
DESCRIPTION

This command gathers raster information for the currently-selected layer.
If the call is successful, an ecs RasterInfo structureis returned

inecs Result. (See ecs RasterInfo, on page 48 for details on interpreting
ecs Result).

SEE ALSO
cln_SelectLayer

OGDI Research Institute

59

60

Chapter 3

cln_GetServerProjection
NAME
cIn_GetServerProjection returns the server’s current projection.

SYNOPSIS

ecs_Result *cln_GetServerProjection(dientlD)

int dientlD

ARGUMENTS
ClientID isthe client identifier.
DESCRIPTION

This command returns the cartographic projection of the server. If
successful, thereturned valueisaAText field withinaecs Result. Theresult
isreturned asavalid projection descriptor string (see Projection, on page 27
for details).

SEEALSO
cln_SetServerProjection, cln_SetClientProjection

OGDI Research Institute

int

cln_LoadCache
NAME

cln_LoadCache loads datafor the region set by the ecs SetRegionCaches
command.

SYNOPSIS

cln_LoadCache(dientID, |s, error_nessage)
int dientlD
ecs_Layer Sel ection *Is;
char **error_message;

ARGUMENTS

ClientID istheclient identifier.

Is isthe layer selection to load into the cache.
error_message isapointer to astring with an error message.
DESCRIPTION

This command creates a new cache and |oads object datainto the cache to
allow quicker recovery of objects. This data comes from the region set by
thecln_SetRegionCaches command. Subsequent callsto thecln_GetObject
command and the cin_GetNextObject command are routed to the cache to
determine whether the datais already there.

The command takes several steps. First acheck is doneto determine
whether the cache already exists. If it does not, anew cacheiscreated and a
coverageisallocated. All objectsinthe coverage are added to the cacheand
the new cacheisadded totheinterna list of caches. If thisissuccessful, the
value TRUE is returned.

SEEALSO
cln_SetRegionCaches, cln_ReleaseCache

OGDI Research Institute

62

Chapter 3

int

cln_ReleaseCache
NAME

cIn_ReleaseCache deletes the cache related to a coverage stored by the
cln_L oadCache command.

SYNOPSIS

cl n_Rel easeCache(dientID, |s, error_nessage)
int dientlD
ecs_Layer Sel ection *Is;
char **error_message;

ARGUMENTS

ClientID istheclient identifier.

Is isthe layer selection to release from the cache.
error_message isapointer to astring with an error message.
DESCRIPTION

This command deletes the cached memory for a particular coverage.
Subsequent callsto ecs GetObject and ecs GetNextObject for this
particular coverage go to the original geographic datastore rather than to the
cache. If it issuccessful, the value TRUE isreturned, otherwise the result
is FALSE and an error message is returned.

EXAMPLE

cln_ReleaseCache

SEE ALSO

cln_SetRegionCaches, cln_LoadCache

OGDI Research Institute

cln_ReleaselLayer
NAME

cln_Releasel ayer - releases a layer.
SYNOPSIS

ecs_Result *cl n_Rel easelLayer(CientID, Is)

int dientlD
ecs_Layer Sel ection *Is;

ARGUMENTS

ClientID istheclient identifier.

Is isthe layer information structure.
DESCRIPTION

This command releases the current layer. The geographic objects are
released from the region previously selected using the cin_SelectRegion
command. The cin_Releaselayer command deall ocates the memory
allocated by the cln_Selectl ayercommand.

EXAMPLE
cln_Releasel ayer
SEEALSO

cln_GetNextObject, cln_GetDictionary, cln_UpdateDictionary,
cln_SelectRegion

OGDI Research Institute

64

Chapter 3

cln_SelectLayer
NAME

cln_SelectLayer - specifies the current coverage or layer.
SYNOPSIS

ecs_Result *cln_SelectLayer(dientlD, |s)

int dientlD
ecs_Layer Sel ection *Is;

ARGUMENTS

ClientID istheclient identifier.
Is isthe layer information structure.

DESCRIPTION

This command defines the current coverage or layer. The selected layer is
considered the current coverage by all other coverage-oriented command
calsuntil thiscommand is called again with anew value or the
cln_Releasel ayer command is called. When geographic objects are
retrieved from this coverage, they are retrieved from the region previously
selected by the cln_SelectRegion command. If the cln_SelectRegion
command was not called, the default region is used.

If thelayer ispresent in alocal cache, dataisretrieved from the cache rather
than from the original datastore. (See Caching, on page 40 for details.)

SEE ALSO

cln_GetNextObject, cln_GetDictionary, cln_UpdateDictionary,
cln_SelectRegion

OGDI Research Institute

cln_SelectRegion (OGDI)
NAME
cIn_SelectRegion Selects the current geographic region.

SYNOPSIS

ecs_Result *cln_SelectRegion(CientID, gr)

int dientlD
ecs_Region *gr;
ARGUMENTS
ClientID isthe client identifier.
gr isthe geographic region to be selected.
DESCRIPTION

This command specifies the current geographic region. Until the command
is called again, al geographic objects retrieved are contained (partially or
totally) withinthisregion. Theregionisdefined with theclient’sprojection.
The result isreturned in the standard ecs Resultstructure.

SEE ALSO
cln_GetNextObject, cln_SelectLayer

OGDI Research Institute

65

66

Chapter 3

cln_SetClientProjection
NAME
cIn_SetClientProjection specifiesthe client’s projection.

SYNOPSIS

ecs_Result *cln_SetdientProjection(dientlD, projection)

int dientlD

char *projection;
ARGUMENTS
ClientID isthe client identifier.

projection isthe projection descriptor string. (See Projection, on page 27
for details.)

DESCRIPTION

This command defines or changes the client projection. The stringisa
cartographic projection descriptor.

SEEALSO
cln_SetServerProjection, cln_SetClientProjection cln_GetServerProjection

OGDI Research Institute

int

cln_SetRegionCaches
NAME

cIn_SetRegionCaches specifies the geographic region of the data that will
be kept in the caches.

SYNOPSIS

cl n_Set Regi onCaches(dientI D, GR, error_nessage)
int dientlD
ecs_Region *GR
char **error_message;
ARGUMENTS
ClientID istheclient identifier.
GR isthe geographic region.
error_message iSapointer to astring with an error message.
DESCRIPTION

This command tries to define the geographic region of the cache. If itis
successful, the command returns the human-readable error message TRUE
error_message; otherwise, it returns FALSE. (Note: This char * should not
be de-allocated by the calling procedure.)

SEEALSO
cln_LoadCache, cin_ReleaseCache

OGDI Research Institute

68

Chapter 3

cln_SetServerLanguage
NAME

cIn_SetServerLanguage specifiesthe language in which the server returns
information.

SYNOPSIS

ecs_Result *cl n_Set ServerLanguage(d ientlD, |anguage)

int dientlD

int | anguage;
ARGUMENTS
ClientID istheclient identifier.

language isthe standard Microsoft country code corresponding to the
selected language. For example, the code for English(US) is 001.

DESCRIPTION

Thiscommand specifiesthelanguageinwhich the server should return data.
If cln_SetServerLanguage is not implemented in the server, an error
message is returned. Many servers do not support this command.

OGDI Research Institute

cln_SetServerProjection
NAME
cIn_SetServerProjection specifiesthe projection of the driver.

SYNOPSIS

ecs_Result *cln_SetServerProjection(dientlD, projection)

int dientlD
char *projection;

ARGUMENTS

ClientID isthe client identifier.

projection isthe current server projection.
DESCRIPTION

This command defines or changes the driver projection. The projection
parameter isavalid cartographic projection descriptor. (See Projection, on
page 27 for details.)

EXAMPLE

cln_SetServerProjection

SEEALSO

cln_SetClientProjection, cln_GetServerProjection

OGDI Research Institute

70

Chapter 3

cln_UpdateDictionary
NAME

cIn_UpdateDictionary returnsan updated list that describesthe contentsof a
datastore.

SYNOPSIS

ecs_Result *cln_UpdateDictionary(CientlD, info)

int dientlD
char *info

ARGUMENTS
ClientID istheclient identifier.

info isastring that can be used by somedriversto specify which part of the
dictionary toreturn. Refer tothedocumentation about thespecificdriver for
more information.

DESCRIPTION

This command returns alist of geographic coverages available at the driver
end. Thiscommand is normally executed within adata dictionary object so
that it can initialize itself and later refreshitself. The format of the returned
vaue is specific to the driver and can usually only be correctly interpreted
by a Data Dictionary object coming from the same source driver.

SEE ALSO
cln_GetDictionary

OGDI Research Institute

Chapter 4 Tcl/Tk API

72

Tcl/Tk API

Chapter 4

This chapter explains the functions available in the Tcl/Tk API that can be
used by developersat the programming level, aswell ashow to createawish
with the proper extension

OGDI Research Institute

Using the Extension with Tcl

The OGDI requires John Ousterhout’s official releaseversion of Tcl 7.4 and
Tk 4.0 under UNIX. Under Windows 95/NT, the OGDI extension for Tcl is
only supported with Gordon Chaffee’s TKNT version of Tcl 7.4 and Tk 4.0.
Until the official Windows 95/NT versionisfully tested, is proven to be
stable and provides the same level of functionality as TKNT, OGDI will
only run under Mr. Chaffee’sversion. OGDI will not run under Windows
3.X.

To add the extension to the interpreter under UNIX, you must add acall to
ecs Init into the Tcl_Applnit() procedure, and then ensure that the library
Islinked during compilation of the resulting wish. (A complete description
of thisprocessisfound in John Ousterhout’s book on Tcl/Tk). The
modification may look something like this:

i nt

Tcl _Applnit(interp)
Tcl _Interp *interp; /* Interpreter for application. */

{

Tk_W ndow mai n;

if (Tel_Init(interp) == TCL_ERROR) {
return TCL_ERROR

}

if (Tk_Init(interp) == TCL_ERROR) {
return TCL_ERROR

}

if (ecs_Init(interp) == TCL_ERROR) {
return TCL_ERROR

}

OGDI Research Institute

73

74

Chapter 4

To use the OGDI extension with Tcl under Windows, the interpreter itself
does not require re-compilation. It is still possible to use the previous
method with TKNT, but it isaso possible to load aTcl extension
dynamically from within Tcl itself. Thisrequiresthe name of the
dynamically-loadable library, aswell as the name of the function which
Initializes the commands so that the Tcl interpreter can use them. For the
OGDI extension, thisrequiresthat the line:

extension ecs_tcl.dll ecs_Init

becalledfromaTcl script. Oftenthemost convenient placefor thisiswithin
theinit.tcl initialization script for your application.

OGDI Research Institute

Creating a Tcl Attribute-Callback Procedure

For some databases, a Tcl callback procedure must be executed during calls
to ecs GetObject, ecs GetNextObject and ecs_GetAttributesFormat
instead of going to the server for thisinformation. The Tcl function is
executed in the format:

procName clientlD objectlD Tcl Var

when ecs_GetObject or ecs GetNextObject is called, and it is responsible
for setting the TclVar according to the attributes. When
ecs_GetAttributesFormat is executed, the TclProc called as

procNane clientID {} {}

(i.e. with an empty list asthe objectI D). It returns the same value that you
would expect from that function which shows the format of the attributes
returned in the Tcl Var.

If there is no value specified for the Tcl procedure, it removes any existing
Tcl procedure that has been registered for thisURL. To remove an existing
callback procedure, you must do thisrather than passing aNULL listin
place of the Tcl procedure. The basic structure of this Tcl callback should
be:

proc nyCal |l back {client|ID objectlD Tcl Var} {
if {[string conpare $objectID ""] == 0} {
we are being asked for the attributes fornmat
so, return alist in the form
return { {TYPE <l ength> <precision> <nullable>} ... }
e.g. return {CHAR 5 0 0}

*** replace this line with your own code:
return {CHAR 5 0 0}

} else {
gl obal $Tcl Var

if [info exists $TclVar] {

unset $Tcl Var

}

OGDI Research Institute

76

Chapter 4

set i 0
set attributes, one per line. "attributelList" has

been set in advance by the programmer to be a list
of sublists. Each sublist contains a list of the
attributes, as described by the format string

above.

*** add code here for creating the attributelList

foreach attr $attributeList {
set ${Tcl Var}($i) S$attr
i ncr

}

return a null list.
return {}

OGDI Research Institute

Chapter 5 Tcl/Tk APl Commands

Tcl/Tk API Commands
This chapter explainsthefunctionsavailablein the
Tcl/Tk API that can be used by developers at the
programming level, as well as how to create a wish
with the proper extension

78 o Chapter5 OGDI Research Institute

ecs_AddAttributeFormat

int

NAME

ecs_AddAttributeFormat adds an attribute format to an objAttributeFormat
attribute.

SYNOPSY S

ecs_AddAttri buteFormat (r, nane,type, | enght, precision, nullable)
ecs_Result *r;

char *nang; ecs_AttributeFormat type;

int |ength;

int precision;

int nullable;

ARGUMENTS

r isapointer to apreviously-defined structure.

name isthe name of the attribute.

type iSthe enumerated type that describes the format of the attribute, for
example, VARCHAR.

length is attribute format information.
precision is attribute format information.
nullable is attribute format information.

DESCRIPTION

Thisfunction adds an attribute format to the objAttributeFormat attribute.
SEE ALSO

ecs_SetObjAttributeFormat

OGDI Research Institute

80

Chapter 5

ecs_AssignTclAttributeCallback
NAME

ecs_AssignTclFunction AssignsaTcl callback procedure whichis called
during callsto ecs GetObject, ecs GetNextObject, and
ecs_GetAttributesFormat.

SYNOPSIS

ecs_AssignTcl Function URL Tcl Proc

ARGUMENTS
URL Uniform Resource Locator

tclProc A Tcl procedure that sets the attribute array or returnsthe format of
that array.

DESCRIPTION

Setsa Tcl callback procedure to be executed during callsto ecs GetObject,
ecs_GetNextObject andecs GetAttributesFormat instead of going to the
server for thisinformation. The Tcl function is executed in the format:

procName clientlD objectlD Tcl Var

when ecs GetObject or ecs GetNextObject iscalled, and it is responsible
for setting TclVar according to the attributes. When
ecs GetAttributesFormat is executed, TclProcis called as

procNane clientID {} {}

(i.e. with an empty list asthe objectID). It returns the same value that you
would expect from that function which showsthe format of the attributes
returned in TclVar.

If there is no value specified for the Tcl procedure, it removes any existing
Tcl procedure that has been registered for thisURL. To remove an existing
callback procedure, you must do this rather than passing aNULL listin
place of the Tcl procedure.

EXAMPLE

OGDI Research Institute

The programmer who wishes to use myProc as a callback procedure from
the gltp:/GRA SS/spearfish/USER1local URL would call thefunctioninthe
following way:

ecs_AssignTcl Attri buteCal | back gltp:/GRASS spearfi sh/ USERL nyProc

To clear thisfunction as a callback, the syntax is:
ecs_AssignTcl Attri buteCal | back gltp:/GRASS spearfi sh/ USERL

SEE ALSO
ecs_GetAttributesFormat, ecs GetObject

OGDI Research Institute

81

82

Chapter 5

ecs_BackSlash
NAME
ecs_BackSlash handles backslash sequences.

SYNOPSY S

char ecs_Backsl ash(src, readPtr)

char *src;
int *readPtr;

ARGUMENTS

src isapointer. It pointsto the backslash character of abackslash sequence.
readptr iSthe number of characters read from src, unless NULL.
DESCRIPTION

This function extracts information from the URL and returnsit in the form
of arguments.

SEEALSO

ecs SplitURL, ecs freeSplitURL, ecs FindElement,
ecs_CopyAndCollapse, ecs SplitList

OGDI Research Institute

ecs_CreateClient
NAME
ecs_CreateClient Createsaclient (connects to a geographic datastore).

SYNOPSIS

ecs_CreateCient URL

ARGUMENTS

URL Uniform Resource Locator (See Uniform Resource Locators, on page
26).

DESCRIPTION

Thisfunction creates a client and establishes a connection between this
client and a geographic datastore identified by the URL. Thiscommandis
awaysthefirst step before any data can be retrieved from the driver.

In the case of aremote driver, the gltpd must already be running at the
location pointed by the URL.

A newly-created client is set to the projection of the server by default.

Thiscommand can also be used to ensurethat an existing client isstill valid.
If you try to open aclient that is aready open, it will return the name of the
client asif it had been re-opened or an error message, but it will not affect
the state of the connection.

POSSIBLE ERROR MESSAGES
not able to understand this url The URL isnot properly constructed.

not able to open the dynamic library The driver (.dll under Windows, .so
file under UNIX) associated with thistype of server could not be found.
Ensurethat it isin the directory that contain the executables.

EXAMPLE

The programmer who wishesto createaclient that usesalocal GRASSURL
with a mapset located at C:\spearfish\USER1 would have to call the
function in the following way:

ecs_Createdient gltp:/GRASS/ C: /spearfish/ USERL

OGDI Research Institute

84

Chapter 5

SEEALSO
ecs DestroyClient

OGDI Research Institute

ecs_DestroyClient
NAME

ecs_DestroyClient Destroysaclient and unloads the associated driver from
memory. Thiswill disconnect the communication with the geographic
datastore.

SYNOPSIS

ecs_Destroydient URL

ARGUMENTS
URL Uniform Resource Locator
DESCRIPTION

Thisfunction destroys a client and disconnects the interface with the
geographic datastore.

EXAMPLE

The programmer who wishesto destroy the client created for thelocal URL
oltp:/GRASS/spearfish/USER1would have to call the function in the
following way:

ecs_DestroyCient gltp:/GRASS spearfish/ USERL

SEE ALSO
ecs CreateClient

OGDI Research Institute

86

Chapter 5

ecs_GetAttributesFormat
NAME

ecs_GetAttributesFormat Get alist describing the attributes of the current
coverage.

SYNOPSIS

ecs_CetAttributesFormat URL

ARGUMENTS
URL Uniform Resource Locator

DESCRIPTION

Returns a list that describes all attributes for the currently-selected
coverage, based on the last selection made using the
ecs_SelectlL ayercommand.

Thereturned valueisalist composed of one sublist for each attribute. Each
sublist describes the format for an object retrieved from ecs GetObject and
ecs_GetNextObject in the form of a character string followed by three
integers. These values represent the attribute name (in quotation marks),
the length of the attribute value field character string, the precision, and
whether it is nullable or not.

If there isatclCallback registered for this URL, it will execute this
procedure instead. Pleaserefer to ecs AssignTclAttributeCallback, on
page 80 for more details.

EXAMPLE

The programmer who wishes to get the list of attributes of the current
coveragefrom thegltp:/GRA SS/spearfish/USER1local URL would call the
function in the following way:

ecs_CetAttributesFormat gltp:/ GRASS spearfi sh/ USERL

OGDI Research Institute

ecs_GetDictionary
NAME
ecs_GetDictionary Retrievean][incr tcl] applet describing the contentsof a
geographic datastore.
Synopsis
ecs_CetDictionary URL

ARGUMENTS
URL Uniform Resource Locator

DESCRIPTION

ReturnsaTcl list of two elements. The first isthe declaration of the
dictionary inasublist of theformitcl_class<classname>. Thesecondisan
[incr tcl] class definition (under itcl 1.5) that describes the content of the
datastore at the driver's end. This object must be sourced, instantiated and
integrated into the current session. The returned [incr tcl] object must be a
syntactically and semantically valid itcl_class statement. It must also inherit

from the tkg abstract classto be able to respond to drag & drop operations.

EXAMPLE

To get the dictionary from gltp:/GRA SS/spearfish/USERL, the function
would be called in the following way:

ecs_CetDictionary gltp:/GRASS spearfi sh/ USERL

SEE ALSO
ecs UpdateDictionary

OGDI Research Institute

88

Chapter 5

ecs_GetGlobalBound
NAME
ecs_GetGlobalBound Get the driver’s global geographic region.

SYNOPSIS

ecs_Cet d obal Bound URL

ARGUMENTS
URL Uniform Resource Locator
DESCRIPTION

Thisfunction returns the server’s global geographic region. The returned
valueisalist of the form: { north south east west NS resolution

EW _resolution}. Thisis used to return the global bounding rectangle of a
datastore.

EXAMPLE

The programmer that wishes to get the global bound of the current region
from the gltp:/GRASS/spearfish/USER1local URL would call the function
in the following way:

ecs_Cet d obal Bound gl tp:/ GRASS/ spear fi sh/ USERL

OGDI Research Institute

ecs_GetNextObject

NAME

ecs_GetNextObject Get the next object in the currently-selected coverage.
SYNOPSIS

ecs_Cet Next Chj ect URL Tcl Var

ARGUMENTS

URL Uniform Resource L ocator

var Tcl array variable that receives the attributes list of the next object.
DESCRIPTION

Returns the next geometric object that iseither partially or totally contained
within the current geographic region in the currently-selected coverage. The
underlying function isintended to be used with the C Language APl and is
only provided inthe Tcl interface for testing and debugging purposes.

Thisfunction returns attributes of geometric object Id. Thereturned valueis
aTcl list composed of information for this coverage. Thereturned listisin
the form:

{Fam |y ObjectID {hject’s data} region}

The string supplied to TclVar should be avalid Tcl variable name. A cdll to
ecs GetNextObject erases whatever was in this variable, and creates an
array initsplace. ThisTcl array (indexed by integers, starting from "0")
contains alist of attributes in the format returned by
ecs_GetAttributesFormat.

If thereisaTcl callback procedure registered, this procedure sets the Tcl
array and overwritesany valuesthat wereinthisTcl array before. However,
the returned value for ecs GetNextObject is still set by the client. Please
refer to ecs AssignTclAttributeCallback, on page 80 for more details.

When there are no more objects to be retrieved, the Tcl error "End of
selection” is returned.

ecs_GetNextObject does not work in conjunction with ecs_ GetObject. In
other words, you cannot select an obj ect randomly using thelatter command
and then continue retrieving objects from ecs_ GetNextObject.

OGDI Research Institute

90

Chapter 5

EXAMPLE

The programmer who wishes to get the next object from the current
coverage and region from the local URL gltp:/GRASS/spearfish/USER1
would call the function in the following way:

ecs_GCet Next Chj ect gl tp:/ GRASS spearfi sh/ USERL

SEE ALSO
ecs SelectRegion, ecs SelectLayer, ecs AssignTclAttributeCallback

OGDI Research Institute

ecs_GetObject
NAME
ecs_GetObject Get the attributes of the specified geometric object.

SYNOPSIS

ecs_Cethject URL Id Tcl Var

ARGUMENTS
URL Uniform Resource Locator
Id Object identification

Tclvar A Tcl variable name which contains the attributes (if any) of the
object.

DESCRIPTION

Thisfunction returns the attributes of the geometric object Id. The returned
vaueisaTcl list composed of information for this coverage. The returned
listisin the form:

{Fam |y ObjectID {list of object’s data} region}

The string supplied to Tclvar should be avalid Tcl variable name. A call to
ecs GetObject erases whatever wasin thisvariable, and creates an array in
its place. ThisTcl array (indexed by integers, starting from "0”) contains a
list of attributes in the format returned by ecs GetAttributesFormat.

If thereisaTcl callback proc registered, it will set the Tcl array and override
any valuesthat wereinthisarray before. However, thereturned valueisstill
set by the client. Please refer to ecs AssignTcl AttributeCallback, on page
80 for more details.

EXAMPLE

To retrieve the attributes for an object with ID "3” from the local URL
oltp:/GRASS/spearfish/USERL the prgrammer would call the functionin
the following way:

ecs_Cet Ohj ect gltp:/GRASS/ spearfish/USERL 3 x

The attributes will be placed in the Tcl variable x(0).

OGDI Research Institute

92

Chapter 5

SEEALSO
ecs SelectLayer

OGDI Research Institute

ecs_GetObjectldFromCoord
NAME

ecs_GetObjectldFromCoord Get the object that is nearest to a set of
coordinates in the current layer.

SYNOPSIS

ecs_Cet bj ect | dFronCoord URL X y

ARGUMENTS

URL Uniform Resource Locator

x Geographic coordinate (latitude) in client’s projection.

y Geographic coordinate (longitude) in client’s projection.
DESCRIPTION

Returns the Id of the geometric object that is the closest to the geographic
location(x,y) in the currently-selected coverage. For an area, this function
returnsan Id if the (x,y) coordinateis fully within the valid area.

EXAMPLE

Given apoint in latitude and longitude, an object at that point can be
retrieved from gltp:/GRASS/spearfish/USERL1 using:

ecs_Cet Obj ect | dFronmCoord gl t p: / GRASS/ spear fi sh/ USERL 608525 4925130

SEEALSO
ecs_SelectLayer, ecs GetObject

OGDI Research Institute

94

Chapter 5

ecs_GetRasterInfo
NAME

ecs_GetRasterInfo Get information on the currently-selected raster
coverage.

SYNOPSIS

ecs_CetRasterIinfo URL

ARGUMENTS
URL Uniform Resource Locator

DESCRIPTION

Get theinformation on the current raster coverage. ThisreturnsaTcl listin
the form:

{ {m ninum category} {maxi num category} width height } { {category-1}
{category-2} ... {category-n} }. Each element in the category list
contains a list describing a category:{ {category number} r g b {l abel}

{quantity} }

EXAMPLE

The programmer who wishes to get the information on the current raster
coverage from the URL gltp:/GRASS/spearfish/USER1local URL would
cal the function in the following way:

ecs_Cet RasterInfo gltp:/GRASS spearfi sh/ USERL

OGDI Research Institute

ecs_GetServerProjection
NAME
ecs_GetServerProjection Return the server’s current projection.

SYNOPSIS

ecs_GCet ServerProjection URL

ARGUMENTS
URL Uniform Resource Locator
DESCRIPTION

Returns the cartographic projection of the server. Thereturned valueisa
projection descriptor string (see Uniform Resource Locators, on page 26
for more details).

EXAMPLE

The programmer who wishesto get the server’s current projection fromthe
local URL gltp:/GRA SS/spearfish/USER1would call the function in the
following way:

ecs_Cet ServerProjection gltp:/GRASS spearfi sh/ USERL

SEEALSO
ecs SetServerProjection, ecs_SetClientProjection

OGDI Research Institute

96

Chapter 5

ecs_GetURLList
NAME

ecs_GetURLList Returnthelist of currently-established connectionsto
geographic datastores.

SYNOPSIS

ecs_Cet URLLI st

none Thiscommand takes no arguments.

DESCRIPTION
ReturnsaTcl list of currently-established driver connections.
EXAMPLE

The programmer who wishesto get thelist of currently-established server
connections would call the function in the following way:

ecs_URLLI st

OGDI Research Institute

ecs_LoadCache
NAME

ecs_LoadCache Load datafor the region set by ecs SetCache into the
cache.

SYNOPSIS

ecs_LoadCache URL Coverage

ARGUMENTS
URL Uniform Resource Locator

family the Family of the objects of the geographic dataset. Thismust be one
of Area, Line, Point, Matrix, Image, Text, Edge, Face, Node or Ring. Note
the capitalization of the family name.

coverage String describing the geographic data set to be selected.
DESCRIPTION

Creates a new cache and loads object data into the cache to allow quicker
recovery of objects. Thisdatacomesfrom theregion set by ecs SetCache.
Subsequent callsto ecs GetObject and ecs GetNextObject will look in the
cacheto seeif the datais already there.

The function takes severa steps. First, acheck is doneto determine
whether the cache already exists. If not, anew oneiscreated and acoverage
isallocated. All objectsin the coverage are added to the cache and the new
cache isadded to theinternal list of caches. If thisissuccessful, the value
TRUE isreturned.

EXAMPLE

The programmer who wishes to set the cache for
oltp:/GRASS/spearfish/USER1 would call the function in the following

way'.

ecs_LoadCache gl tp:/ GRASS/ spearfish/ USERL Li ne roads@ERVANENT
SEE ALSO
ecs_LoadCache, ecs ReleaseCache

OGDI Research Institute

98

Chapter 5

ecs_ReleaseCache
NAME

ecs_ReleaseCache Release the coverage that was cached by
ecs_LoadCache.

SYNOPSIS

ecs_Rel easeCache URL Fanily Coverage

ARGUMENTS
URL Uniform Resource Locator

family the Family of the objects of the geographic dataset. Thismust be one
of Area, Line, Point, Matrix, Image, Text, Edge, Face, Node or Ring. Note
the capitalization of the family name.

coverage String describing the geographic data set to be released.
DESCRIPTION

Rel eases the cached memory for a particular coverage. Subsequent callsto
ecs_GetObject and ecs GetNextObject for this particular coverage will go
to the origina geographic datastore rather than to the cache.

EXAMPLE

The programmer who wishesto rel ease the cache that was previoudly |oaded
for the coverage roads@PERMANENT with family Line at
oltp:/GRASS/spearfish/USER1would call the function in the following

way.
ecs_Rel easeCache gltp:/ GRASS spearfi sh/ USERL Li ne roads@ERVANENT

SEE ALSO
ecs_LoadCache, ecs SetCache

OGDI Research Institute

ecs_ReleaselLayer

NAME

ecs_ReleaseLayer Release alayer.
SYNOPSIS

ecs_Rel easeLayer URL fanmily coverage

ARGUMENTS

URL Uniform Resource L ocator

Family Family to which al the objects of the geographic data set belong.
Coverage String describing the geographic data set to be selected.
DESCRIPTION

Thisfunction releases the current coverage (layer). The geographic objects
are released from the region which was previously selected by

ecs SelectRegion. ecs Releasel ayer releases the memory allocated by
ecs SelectLayer.

EXAMPLE

In order to release alayer in the "Line” family in the coverage
roads@PERMANENT from the local URL
oltp:/GRA SS/spearfish/USER1the function would be used as follows:

ecs_Rel easelLayer gltp:/GRASS spearfish/ USERL Li ne roads@ERVANENT

SEEALSO

ecs GetNextObject, ecs GetDictionary, ecs UpdateDictionary,
ecs_SelectRegion

OGDI Research Institute

100 ¢

Chapter 5

ecs_SelectLayer
NAME
ecs_SelectLayer Specifiesthe current coverage or layer.

SYNOPSIS

ecs_Sel ect Layer URL fanily coverage

ARGUMENTS
URL Uniform Resource Locator

family String describing the geographic data set to be selected. This must
be one of Area, Line, Point, Matrix, Image, Text, Edge, Face, Node or Ring.

Note the capitalization of the family name.
coverage String describing amember of the geographic data set.
DESCRIPTION

Thisfunction sets the current coverage (layer). Until thisfunction iscalled
againwithanew valueor ecs Releasel ayeriscalled, theselected layer will
be considered as the current coverage by all other function calls. When
geographic objects are retrieved for this coverage, they will be from the
region previously selected by ecs SelectRegion. If ecs SelectRegion has
not been called, the default region will be used.

EXAMPLE

In order to select alayer in the Line family in the coverage
roads@PERMANENT from thelocal URL gltp:/GRA SS/spearfish/USER1
the function would have to be called in the following way:

ecs_Sel ect Layer gltp:/GRASS/ spearfish/USERL Li ne roads@ERVANENT

SEEALSO

ecs_GetNextObject, ecs GetDictionary, ecs UpdateDictionary,
ecs_SelectRegion

OGDI Research Institute

ecs_SetCache
NAME

ecs_SetCache Setageographic region that will be subsequently loaded into
the cache.

SYNOPSIS
ecs_Set Cache URL Region

ARGUMENTS
URL Uniform Resource Locator

Region A Tcl list representing the geographic regionintheform{N SEW
NS resolution EW_resolution}

DESCRIPTION

In the case where transmission of data can be somewhat slow, data can be
stored on theclient side of the connection. ecs_SetCache preparesastorefor
a specified geographic region for use by ecs LoadCache.

Example

The programmer who wishes to set the cache for
oltp:/GRASS/spearfish/USER1 would call the function in the following

way:
ecs_Set Cache gl tp:/ GRASS/ spearfi sh/ USERL \
{4928000 4914000 609000 590000 50 50}

SEEALSO
ecs_LoadCache, ecs ReleaseCache

OGDI Research Institute

102 ¢

Chapter 5

ecs_SetClientProjection
NAME
ecs_SetClientProjection Set the projection of the client.

SYNOPSIS

ecs_SetdientProjection URL projection

ARGUMENTS
URL Uniform Resource Locator

projection Projection descriptor string. (See Projection, on page 27 for
more details.)

DESCRIPTION

Sets or changes the client projection. The projection parameter isa
cartographic projection descriptor.

EXAMPLE

To set the client projection for gltp:/GRA SS/spearfish/USER1, the call
would look like:

ecs_SetCientProjection gltp:/ GRASS spearfish/ USERL \

{+proj =nerc +el | ps=GRS80}

SEEALSO

ecs_SetServerProjection, ecs_SetClientProjection,
ecs GetServerProjection

OGDI Research Institute

ecs_SetServerLanguage
NAME

ecs_SetServerLanguage Setsthe language in which the server returns
information.

SYNOPSIS

ecs_Set Server Language URL Nunber

ARGUMENTS
URL Uniform Resource Locator

number The number corresponding to the language according to the
standard Microsoft country code. For example, English(US) is 001.

DESCRIPTION

Thistells the server in which language it should return data. If thisis not
implemented in the server, an error message is returned. Many servers do
not support this function.

EXAMPLE

The programmer who would like to set the language returned by the driver
to English for the URL gltp:/GRASS/spearfish/USER1 would call the
function in the following way:

ecs_Set Server Language gl tp:/GRASS/ spearfish/USERL 1

OGDI Research Institute

104 ¢

Chapter 5

ecs_SetServerProjection
NAME
ecs_SetClientProjection Set the projection of the driver.

SYNOPSIS

ecs_SetdientProjection URL projection

ARGUMENTS

URL Uniform Resource L ocator

projection Projection descriptor string. (See Projection, on page 27)
DESCRIPTION

Sets or changes the driver projection. The projection parameter isa
cartographic projection descriptor.

EXAMPLE

To set the driver projection for gltp:/GRA SS/spearfish/USERL, the call
would look like:

ecs_Set ServerProjection gltp:/GRASS spearfish/ USERL \

{+proj =nerc +el | ps=GRS80}

SEE ALSO
ecs_SetClientProjection, ecs GetServerProjection

OGDI Research Institute

ecs_SelectRegion

NAME

ecs_SelectRegion Set the current geographic region.
SYNOPSIS

ecs_Sel ect Regi on URL region

ARGUMENTS
URL Uniform Resource Locator

Region A Tcl list representing the geographic regionintheform{N SEW
NS resolution EW_resolution}

DESCRIPTION

Sets the current geographic region. Until the functionis called again, all
geographic objects retrieved will be contained (partialy or totally) within
thisregion. Theregionis set with the client’s projection. Theresult is
returned in the standard ecs_Result structure.

EXAMPLE

The programmer who wishes to select aregion from the
oltp:/GRASS/spearfish/USER1 local URL would call the function in the
following way:

ecs_Sel ect Regi on gltp:/ GRASS spearfi sh/ USERL {4928000 \
4914000 609000 590000 50 50}

SEEALSO
ecs GetNextObject, ecs SelectLayer

OGDI Research Institute

106 o

Chapter 5

ecs_UpdateDictionary
NAME

ecs_UpdateDictionary Return an updated list that describes the contents of
a datastore.

SYNOPSIS

ecs_UpdateDictionary URL ?dictionaryString?

ARGUMENTS
URL Uniform Resource Locator

dictionaryString An optiona parameter that can be passed to some drivers
to tell the server to return only part of thedictionary. Some servers, such as
the GRASS server, do not implement this feature but others use it in order
to limit the amount of data that is returned with each call to

ecs UpdateDictionary.

DESCRIPTION

Returnsalist of available geographic coverages available at the driver end.
Thiscommand isnormally executed within adata dictionary object soit can
initialize itself and later refresh itself. The format of the returned valueis
specific to thedriver and can usually only be correctly interpreted by aData
Dictionary object coming from the same source driver.

EXAMPLE

The programmer who wishesto get an updated list that describesthe content
of adatastore from the local URL gltp:/GRASS/spearfish/USER1 would
cal the function in the following way:

ecs_UpdateDictionary gltp:/ GRASS spearfish/ USERL

SEEALSO

ecs _GetDictionary

OGDI Research Institute

Chapter 6 Utility library

a07

Utility Library
This chapter introduces the developer to the utility library of functions and
macros. These functions and macros are used to facilitate devel opment by
grouping into one library al the functionsthat are useful when developing
anew driver. The functions have been divided into 5 types; geometric
functions, results preparation functions, regular expression functions,
miscellaneous functions and layer functions. To build anew driver for a
particular datastore, developers can work with these functions or develop
new onesto suit their own needs. Usually devel opers build new functionsin
thelibrary for their particular driver.

Geometric functions include al the functions related to performing
calculations on geometric objects. Result preparation functions use pointers
to render ecs_Result readable in the rest of the application. Regular
expression functions are mainly used for the treatment of URL strings and
other validation processes. Layer functions are used to manage layers. The
miscellaneous functions include functions that do not fit into the other four
classes of functions. Macros are used to simplify the code-writing process
for developers.

Thefollowing list shows all the functions and macros available in the
library:

1 Geometric Functions

» ecs CacObjectMBR
ecs DistanceMBR
ecs_DistanceObject
ecs_DistanceSegment
ecs_GetRegex

2 Results Preparation Functions
» ecs AddRasterInfoCategory
e ecs AddText
e ecs AdjustResult
e ecs CacObjectMBR

108 ¢ Chapter 6 OGDI Research Institute

ecs CleanUp

ecs CleanUpObject
ecs_Resultlnit

ecs SetError

ecs SetGeomArea

ecs SetGeomAreaRing
ecs_SetGeomlmage

ecs SetGeomimageWithArray
ecs_SetGeomLine
ecs_SetGeomMatrix

ecs SetGeomMatrixWithArray
ecs_SetGeomPoint

ecs SetGeomText

ecs SetGeoRegion

ecs SetObjAttributeFormat
ecs SetObjectAttr

ecs SetObjectld
ecs_SetRasterInfo

ecs SetSucces

ecs SetText

Regular Expression Functions
* ecs_GetRegex
EcsGetRegError
EcsRegComp

EcsRegError

EcsRegExec

Miscellaneous Functions

e ecs backSlash

OGDI Research Institute

ecs CopyAndCollapse
ecs_FindElement

ecs freeSplitURL

ecs SplitList
ecs_SplitURL

5 Layer Functions
* ecs Freel ayer
* ecs GetLayer
e ecs Setlayer

6 Macros
e ECSRESULTTYPE

* ECSRESULT

» ECSGEOMTYPE

* ECSGEOM

* ECSAREARING

» ECS SETGEOMBOUNDINGBOX
» ECS SETGEOMLINECOORD
 ECS SETGEOMAREACOORD

* ECS SETGEOMMATRIXVALUE
* ECS SETGEOMIMAGEVALUE

110 ¢ Chapter 6 OGDI Research Institute

Functions

OGDI Research Institute

ecs_AddRasterinfoCategory

NAME

ecs_AddRasterinfoCategory adds araster information category.
SYNOPSY S

int ecs_AddRasterl|nfoCategory (r,no_cat,red,green, bl ue, | abel, qty)
ecs_Result *r;
 ong no_cat;
unsigned int red;
unsi gned int green;
unsi gned int bl ue;
char *|abel;
unsigned long qty;
ARGUMENTS
r isapointer to a previousy-defined structure.
no_cat isthe category number.
red Sthe red component of the category color.
green isthe green component category color.
blue isthe blue component category color.
label isthe category label.

gty isstatistical information about the raster (how many points).
DESCRIPTION

Thisfunction adds araster information category.

SEE ALSO

ecs_SetRasterInfo

112 Chapter 6 OGDI Research Institute

ecs_AddText

NAME

ecs_AddText concatenatestext to an AText item.
SYNOPSYS

int ecs_AddText (r,text)
ecs_Result *r;
char *text;

ARGUMENTS

r isapointer to apreviousy-defined structure.

text isthe string that holds the text to be concatenated.
DESCRIPTION

This function concatenates text to an AText item.

SEE ALSO

ecs SetText

OGDI Research Institute :113

114 ¢
.
.

Chapter 6

int

ecs_AdjustResult
NAME
ecs_AdjustResult replacesall null stringsin ecs Result with empty strings.

SYNOPSY S

ecs_Adj ustResult (r)

ecs_Result *r;

ARGUMENTS

r isapointer to a previousy-defined structure.
DESCRIPTION

Thisfunction replacesall null stringsin ecs Result with empty strings. This
is doneto correct a deficiency of RPC regarding data strings: if astring in
ecs Result isNULL, the software crashes. This function returns the value
TRUE if the operation works correctly.

OGDI Research Institute

int

ecs_CalcObjectMBR

NAME

ecs_CalcObjectMBR calculates the bounding box of an object.
SYNOPSYS

ecs_Cal cQbject MBR (s,T)
ecs_Server *s;
ecs_Result *r;

ARGUMENTS

s isthe structure of the driver.

r isapointer to apreviously-defined structure.
DESCRIPTION

Given an ecs Result and a previously-defined ecs Object, this function

calculates the bounding rectangle of the object and assignsit to ecs_Result.

SEE ALSO
ecs DistanceObject, ecs DistanceMBR, ecs_DistanceSegment

OGDI Research Institute

°115
.

ecs_CleanUp
NAME

ecs_CleanUp performsacomplete cleanup and reinitialization of
ecs Result.

SYNOPSY S

int ecs_CeanUp (r)
ecs_Result *r;

ARGUMENTS
r isapointer to apreviousy-defined structure.
DESCRIPTION

Thisfunction performs a compl ete cleanup and reinitialisation of
ecs Result.

SEE ALSO
ecs CleanUpObject

116 Chapter 6 OGDI Research Institute

ecs_CleanUpObject
NAME

ecs_CleanUpObject performsacomplete cleanup and reinitialisation of the
ecs Object in ecs Result.

SYNOPSY S
int ecs_Cl eanUpQhj ect (r)
ecs_Result *r;
ARGUMENTS
r isapointer to apreviousy-defined structure.
DESCRIPTION

Thisfunction performs a complete cleanup and reinitialisation of the
ecs Object in ecs Result.

SEEALSO

ecs CleanUp

OGDI Research Institute :117

118

Chapter 6

ecs_CopyAndCollapse
NAME

ecs_CopyAndCollapse copiesastring and eliminates any backslashes that
are not in braces.

SYNOPSY S

voi d ecs_CopyAndCol | apse(count, src, dst)

int count;

register char *src;

regi ster char *dst;

ARGUMENTS

count isthetotal number of charactersto copy from src.
src isthe source string.

dst isthe destination string.

DESCRIPTION

This function copies a string and eliminates any backslashes that are not in
braces. There is no returned value. Count characters get copied from src to
dst. During this process, if backslash sequences are found outside braces,
the backslashes are eliminated in the copy. After scanning count characters.
from source, anull character is placed at the end of dst.

SEE ALSO

ecs SplitURL, ecs BackSlash, ecs freeSplitURL, ecs FindElement,
ecs SplitList

OGDI Research Institute

ecs_DistanceMBR
NAME

ecs_DistanceMBR calculates the distance between a point (posx,posy) and
aMinimum Bounding Rectangle (MBR).

SYNOPSY S

doubl e ecs_Di stanceMBR(xl , yl, xu, yu, posx, posy)

doubl e xlI;
doubl e yl;
doubl e xu;
doubl e yu;
doubl e posx;
doubl e posy;

ARGUMENTS

x1 isthe x coordinate of the first corner of the MBR.

y1 isthey coordinate of the first corner of the MBR.

xu Isthe x coordinate of the second corner of the MBR.
yu isthey coordinate of the second corner of the MBR.
posx isthex coordinate of the point’s position.

posy isthey coordinate of the point’s position.
DESCRIPTION

This function cal culates the distance between a point (posx,posy) and a
Minimum Bounding Rectangle (MBR). It returns the calculated distance.

SEEALSO
ecs_DistanceObject, ecs DistanceSegment, ecs CalcObjectMBR

OGDI Research Institute

ecs_DistanceObject

NAME

ecs_DistanceObject calculatesthedistancebetween apoint (posx,posy) and
an ecs Object.

SYNOPSYS

doubl e ecs_Di stanceChj ect (obj, X Y)
ecs_(bj ect *obj;
doubl e X;
doubl e Y;
ARGUMENTS
obj isageographic object.
X isthe x coordinate of the point.
Y isthey coordinate of the point.

DESCRIPTION

This function cal cul ates the distance between a point (posx,posy) and an
ecs Object. Thefunction returnsthe cal culated distance. If an error occurs,
the function returns a negative value.

SEE ALSO
ecs DistanceMBR, ecs DistanceSegment, ecs CalcObjectMBR

120 ¢ Chapter 6 OGDI Research Institute

ecs_DistanceSegment
NAME

ecs_DistanceSegment calculates the distance between a point (posx,posy)
and aline segment (x1,yl), (xu,yu).

SYNOPSY S

doubl e ecs_Di stanceSegnent (xI, yl, xu, yu, posx, posy)

doubl e xlI;
doubl e yl;
doubl e xu;
doubl e yu;
doubl e posx;
doubl e posy;

ARGUMENTS

x1 isthe x coordinate of the first point of the line segment.

y1 isthey coordinate of the first point of the line segment.

xu isthe x coordinate of the second point of the line segment.
yu isthey coordinate of the second point of the line segment.
posx isthe x coordinate of the point’s position.

posy isthey coordinate of the point’s position.
DESCRIPTION

Thisfunction cal culates the distance between a point (posx,posy) and aline
segment (xl,yl), (xu,yu). The calculated distanceis returned.

SEEALSO
ecs DistanceMBR, ecs DistanceObject, ecs CalcObjectMBR

OGDI Research Institute

1222

Chapter 6

int

ecs_FindElement
NAME

ecs_FindElement Givenapointer toalist, locatesthefirst (or next) element
inthelist.

SYNOPSY S

ecs_FindEl enent(list, elenentPtr, nextPtr, sizePtr, bracePtr)
regi ster char *list;

char **elenentPtr;

char **nextPtr;

int *sizePtr;

int *bracePtr;

ARGUMENTS

list isastring containing a Tcl list with zero or more elements (possibly in
braces).

elementPtr returnsthe location of the first significant character of the first
element in the list.

nextPtr returns the location of the character just after the white space
following the end of the argument (i.e. the next argument or the end of the
list).

sizePtr if non-zero, returns the size of the element.

bracePtr if non-zero, returns non-zero/zero to indicate that the argument
was/was not in braces.

DESCRIPTION

Given apointer to alist, this function locates the first (or next) element in
thelist. Thereturned valueisnormally TRUE, which meansthat the el ement
was successfully located. If FALSE isreturned, it meansthat list did not
have proper list structure; interp->result contains a more detailed error
message. If TRUE is returned, then * elementPtr pointsto the first element
of list and * nextPtr points to the character just after any white space
following the last character that is part of the element. If thisisthe last
argument in the list, then * nextPtr points to the NULL character at the end
of list. If sizePtr isnon-NULL, *sizePtr contains the number of characters
inthe element. If the element isin braces, then *elementPtr points to the

OGDI Research Institute

character after the opening brace and * sizePtr does not include either of the
braces. If there are no elementsin the list, *sizePtr is zero and both
*elementPtr and *termPtr refer to the null character at the end of thelist.

Note: this procedure does not collapse backslash sequences.
SEE ALSO

ecs SplitURL, ecs BackSlash, ecs freeSplitURL, ecs CopyAndCollapse,
ecs SplitList

OGDI Research Institute

ecs_FreelLayer
NAME
ecs_FreeLayer freesaspecified layer.
SYNOPSYS
voi d ecs_FreeLayer (s, | ayer)
ecs_Server *s;
int |ayer;
ARGUMENTS

s isapointer to the ecs Server structure (given by the function or program
that makes the call).

layer isthe layer position.
DESCRIPTION

Thisfunction frees the layer selected by the the function or program that
makes the call.

SEE ALSO
ecs_Setl ayer, ecs GetLayer

124 % Chapter 6 OGDI Research Institute

ecs_freeSplitURL
NAME
ecs_freeSplitURL deallocates all the strings used in SplitURL operations.

SYNOPSYS

voi d ecs_freeSplitURL(type, machi ne, path)

char **type;
char **machi ne;
char **path;

ARGUMENTS

machine isthe machine address containing the URL. If NULL, the server is
local.

type isthe server type of the DLL to be loaded.

path isthe string used by the dynamic database library to set the database
server. The string is specific to each kind of server.

DESCRIPTION
Thisfunction deallocates all the strings used in SplitURL operations.
SEE ALSO

ecs splitURL, ecs BackSlach, ecs FindElement, ecs CopyAndCollapse,
ecs SplitList

OGDI Research Institute

ecs_GetLayer
NAME

ecs_GetLayer findsalayer inthe layer attribute of ecs Server for a
specified selection.

SYNOPSY S

int ecs_GCetlLayer (s, sel)
ecs_Server *s;
ecs_LayerSel ection *sel;

ARGUMENTS

s isapointer to the ecs Server structure (given by the function or program
that makes the cdll).

sel isthe layer selection structure.
DESCRIPTION

Thisfunctionfindsalayer inthelayer attribute of ecs Server for aspecified
selection. It then returnsthe layer position in atable. If the layer does not
exist, anegative value is returned.

SEE ALSO
ecs_Setl ayer, ecs Freel ayer

126 ¢ Chapter 6 OGDI Research Institute

ecs_GetRegex
NAME

ecs_GetRegex allocatesand definesastring with thevalues containedinthe
regular expression.

SYNOPSY S

int ecs_Cet Regex(reg,index, chaine)

ecs_regexp *reg;

int index;

char **chai ne;

ARGUMENTS

reg isapointer to an ecs Regexp structure.

index isanindex of the table contained in ecs Regexp.
chaine isthereturned value string.

DESCRIPTION

Allocates and defines a string with the values contained in the regular
expression.

EXAMPLE

static int conpiled = 0;
static ecs_regexp *extractor;
char substring[100];

int nmsg,i;

char *fullpath = "wal k 10knt;

if (!compiled) {
extractor = EcsRegConp("([0-9]+4) *([a-z]+)");
conpi led = 1;

}

i f (EcsRegExec(extractor, fullpath, NULL) == 0)
return FALSE;

for (i=0;i<3;i++) {

OGDI Research Institute

msg = ecs_Cet Regex(extractor,i,substring);

if (msg) {
printf("%\n",substring);

}

|WIIl output:
10km

10

km

because it is the regular expression extracted from the string passed in the
parameter.

SEE ALSO
EcsRegComp, EcsRegError, EcsGetRegError, EcsRegExec

128 ¢ Chapter 6 OGDI Research Institute

int

ecs_ResultlInit
NAME
ecs_Resultlnit initializesecs Resullt.

SYNOPSYS

ecs_Resultlnit (r)
ecs_Result *r;

ARGUMENTS
r isapointer to a previousy-defined structure.

DESCRIPTION

Thisfunction initializes ecs Result for thefirst time. Thisis performed
when the structure is created.

OGDI Research Institute

ecs_SetError

NAME

ecs_SetError definesan error code and a message in the ecs_Resullt.
SYNOPSY S

int ecs_SetError (r,errorcode, error_nessage)
ecs_Result *r;
int errorcode;
char *error_nessage;

ARGUMENTS

r isapointer to a previousy-defined structure.

errorcode isanumber representing an error code.
error_message ISthe string containing the error message.
DESCRIPTION

Thisfunction definesan error code and amessagein ecs_Result. It doesnot
affect therest of ecs Result structure.

SEEALSO

€cs_SetSuccess

130 ¢ Chapter 6 OGDI Research Institute

int

ecs_SetGeomArea

NAME

ecs_SetGeomArea defines ageographical area.
SYNOPSYS

ecs_Set GeomArea (r, | enght)
ecs_Result *r;
unsi gned int |ength;

ARGUMENTS

r isapointer to apreviousy-defined structure.
length isthe number of ringsin thisarea.
DESCRIPTION

This function defines a geographical area.
SEE ALSO

ecs SetGeomLine, ecs SetGeomPoint, ecs SetGeomText,
ecs SetGeomAreaRing, ecs SetGeomMatrix,
ecs SetGeomMatrixWithArray, ecs_SetGeomlmageWithArray

OGDI Research Institute 31

132 %

Chapter 6

int

ecs_SetGeomAreaRing

NAME

ecs_SetGeomAreaRing definesaringin an area.
SYNOPSYS

ecs_Set GeomAreaRi ng (r, position,|enght, centroid_x, centroid_y)
ecs_Result *r;

int position;

unsi gned int |ength;

doubl e centroid x;

doubl e centroid_y;

ARGUMENTS

r isapointer to apreviousy-defined structure.

position isthe position in the ring table.

length isthe number of pointsin thering.

centroid_x isthe horizontal position that defines the centroid of the ring.
centroid_y isthe vertical position that defines the centroid of thering.
DESCRIPTION

Thisfunction definesaring in an area.

SEEALSO

ecs SetGeomAres, ecs_SetGeomLine, ecs_SetGeomPoint,
ecs SetGeomText, ecs SetGeomMatrix, ecs SetGeomMatrixWithArray,
ecs_SetGeomlimage, ecs SetGeomlimageWithArray

OGDI Research Institute

int

ecs_SetGeomlmage

NAME

ecs_SetGeomimage defines ageographical image.
SYNOPSY S

ecs_Set Georm mage(r, size)

ecs_Result *r;

int size;

ARGUMENTS

r isapointer to apreviousy-defined structure.
size isthe number of columnsin thisraster row.
DESCRIPTION

This function defines a geographical image.
SEE ALSO

ecs SetGeomArea, ecs SetAreaRing, ecs SetGeomLine,
ecs SetGeomPoint, ecs SetGeomText, ecs SetGeomMatrix,
ecs_SetGeomMatrixWithArray, ecs SetGeomlmageWithArray

OGDI Research Institute 33

ecs_SetGeomlmageWithArray
NAME

ecs_SetGeomIimageWithArray definesanimagewith anarray of previously
allocated unsigned integers.

SYNOPSY S

int ecs_SetGeonl negeWthArray (r, size, array)
ecs_Result *r;
int size;
unsigned int *array;

ARGUMENTS
r isapointer to a previousy-defined structure.

size isthe size of the array.
array isthetable of values.

DESCRIPTION

This function defines an image with an array of previoudly allocated
unsigned integers.

SEEALSO

ecs SetGeomArea, ecs SetAreaRing, ecs SetGeomLine,
ecs SetGeomPoint, ecs SetGeomText, ecs SetGeomMatrix,
ecs SetGeomimage, ecs SetGeomMatrixWithArray,

134 ¢ Chapter 6 OGDI Research Institute

int

ecs_SetGeomLine

NAME

ecs_SetGeomLine definesageographical line.
SYNOPSY S

ecs_Set Geonline (r,|enght)

ecs_Result *r;

unsi gned int |ength;

ARGUMENTS

r isapointer to a previousy-defined structure.
length isthe number of pointsin the Polyline.
DESCRIPTION

Thisfunction defines a geographical line.
SEE ALSO

ecs_SetGeomPoint, ecs SetGeomText, ecs SetGeomArea,
ecs SetGeomAreaRing, ecs SetGeomMatrix,
ecs_SetGeomMatrixWithArray, ecs SetGeomlmage,

ecs SetGeomlimageWithArray

OGDI Research Institute 35

136 ¢

Chapter 6

int

ecs_SetGeomMatrix

NAME

ecs_SetGeomMatrix defines a geographical matrix.
SYNOPSY S

ecs_Set Geonmvatrix (r, size)

ecs_Result *r;

int size;

ARGUMENTS

r isapointer to a previousy-defined structure.
size isthe number of columnsin thisraster row.
DESCRIPTION

Thisfunction defines a geographical matrix.
SEE ALSO

ecs SetGeomArea, ecs SetAreaRing, ecs SetGeomLine,
ecs SetGeomPoint, ecs SetGeomText, ecs SetGeomMatrixWithArray,
ecs_SetGeomimage, ecs SetGeomlimageWithArray

OGDI Research Institute

int

ecs_SetGeomMatrixWithArray
NAME

ecs_SetGeomMatrixWithArray definesamatrix with an array.
SYNOPSY S

ecs_Set Geonmvatri xWthArray (r, size, array)
ecs_Result *r;

int size;

unsigned int *array;

ARGUMENTS

r isapointer to a previousy-defined structure.
size isthe size of the array.

array isatable of values.

DESCRIPTION

This function defines a geographical matrix with an array of previously
allocated unsigned integers.

SEEALSO

ecs SetGeomAres, ecs_SetAreaRing, ecs SetGeomLine,
ecs SetGeomPoint, ecs SetGeomText, ecs SetGeomlmage,
ecs SetGeomlimageWithArray, ecs SetGeomMatrix

OGDI Research Institute

ecs_SetGeomPoint

NAME

ecs_SetGeomPoint defines a geographical point.
SYNOPSYS

int ecs_SetGeonPoint (r,X,Yy)
ecs_Result *r;
doubl e x;
doubl e v;

ARGUMENTS

r isapointer to a previousy-defined structure.

x isthe horizontal position of the point to be assigned.
y isthe vertical position of the point to be assigned.
DESCRIPTION

Thisfunction defines a geographical point.

SEE ALSO

ecs SetGeomText, ecs SetGeomLine, ecs SetGeomArea,
ecs SetGeomAreaRing, ecs SetGeomMatrix,

ecs SetGeomMatrixWithArray, ecs SetGeomimage,

ecs SetGeomlimageWithArray

138 ¢ Chapter 6 OGDI Research Institute

int

ecs_SetGeomText

NAME

ecs_SetGeomText defines geographical text.
SYNOPSYS

ecs_Set Geonfrext (r, X, y, desc)

ecs_Result *r;

doubl e x;

doubl e v;

char *desc;

ARGUMENTS

r isapointer to a previousy-defined structure.
x isthe horizontal starting position of the text.
y isthevertical starting position of the text.

desc isthe description string.
DESCRIPTION

This function defines geographical text.
SEE ALSO

ecs SetGeomPoint, ecs SetGeomLine, ecs SetGeomAres,
ecs SetGeomAreaRing, ecs SetGeomMatrix,

ecs SetGeomMatrixWithArray, ecs SetGeomimage,
ecs_SetGeomlmageWithArray

OGDI Research Institute

ecs_SetGeoRegion

NAME

ecs_SetGeoRegion defines a geographic region.
SYNOPSY'S

int ecs_Set GeoRegion (r,north, south, east, west, ns_res, ew_res)
ecs_Result *r;
doubl e north;
doubl e sout h;
doubl e east;
doubl e west;
doubl e ns_res;
doubl e ew res;

ARGUMENTS

r is apointer to a previously-defined structure. north defines the north
geographic region boundary.

east defines the east geographic region boundary.
south defines the south geographic region boundary.
west defines the west geographic region boundary.
ns_res definesthe horizonta size of raster cells.
ew_res definesthe vertical size of raster cells.
DESCRIPTION

This function defines the geographic region.

140 ¢ Chapter 6 OGDI Research Institute

int

ecs_SetLayer

NAME

ecs_SetLayer addsanew layer to the layer list in the ecs_Server.
SYNOPSYS

ecs_Set Layer (s, sel)
ecs_Server *s;
ecs_Layer Sel ection *sel;

ARGUMENTS

s isapointer to ecs Server structure (given by the function or program that
makes the call).

sel isthe layer selection structure.
DESCRIPTION

Thisfunction addsanew layer to the layer listin ecs_Server. It then returns
the layer position in atable. If an error occurs during allocation, a negative
valueis returned.

SEE ALSO
ecs_GetLayer, ecs Freel ayer

OGDI Research Institute

ecs_SetObjAttributeFormat

NAME

ecs_SetObjAttributeFormat defines the objAttributeFormat attribute.
SYNOPSY'S

int ecs_SetChj AttributeFormat (r)
ecs_Result *r;

ARGUMENTS

r isapointer to a previousy-defined structure.
DESCRIPTION

This function defines the obj AttributeFormat attribute.
SEEALSO

ecs AddAttributeFormat

142 % Chapter 6 OGDI Research Institute

int

ecs_SetObjectAttr

NAME

ecs_SetObjectAttr defines the object attribute.
SYNOPSYS

ecs_Set ChjectAttr(r,attr)
ecs_Result *r;
char *attr;

ARGUMENTS
r isthe structure that holds the result of the operation.

attr isthe string that containsthe attribute to be defined. Thisargument must
not be NULL.

DESCRIPTION

This function defines the object attribute. Before calling this function, the
developer must invoke ecs SetGeomText, ecs SetGeomPoint,

ecs SetGeomLineecs SetGeomArea, ecs SetGeomMatrix or

ecs SetGeomIimage to initialize the geographic object.

SEEALSO

ecs SetGeomArea, ecs SetGeomLine, ecs SetGeomPoint,
ecs SetGeomText, ecs_SetGeomMatrix, ecs SetGeomlmage

OGDI Research Institute

144 3
.
.

Chapter 6

int

ecs_SetObjectld

NAME

ecs_SetObjectld definesthe attribute ID of an object.
SYNOPSY S

ecs_Set Gbjectld (r,id)

ecs_Result *r;

char *id;

ARGUMENTS

r isapointer to apreviousy-defined structure.
id isthe object identifier.

DESCRIPTION

Thisfunction defines the attribute ID of an object. Before calling this
function, the developer must invoke, ecs SetGeomText,

ecs SetGeomPoint, ecs SetGeomLine, ecs SetGeomArea,

ecs SetGeomMatrix or ecs SetGeomlmage to initialize the geographic
object.

SEEALSO

ecs SetGeomArea, ecs SetGeomLine, ecs SetGeomPoint,
ecs SetGeomText, ecs_SetGeomMatrix, ecs SetGeomlmage

OGDI Research Institute

int

ecs_SetRasterInfo

NAME

ecs_SetRasterinfo definesthe RasterInfo attribute.
SYNOPSY S

ecs_Set RasterInfo (r,w dth, hei ght)
ecs_Result *r;

int wdth;

int height;

ARGUMENTS

r isapointer to a previousy-defined structure.
width isthe width of the raster.

height isthe height of the raster.
DESCRIPTION

Thisfunction defines the RasterInfo attribute. For this function, you cannot
have maxcat < mincat. If thisoccurs, ecs AddRasterlnfoCategory sets both
valuesto the first value.

SEE ALSO
ecs AddRasterInfoCategory

OGDI Research Institute

ecs_SetSuccess
NAME

ecs_SetSuccess defines a success code and flushes the previoudy-defined
error message.

SYNOPSY S
int ecs_SetSuccess (r)
ecs_Result *r;
ARGUMENTS
r isapointer to apreviousy-defined structure.

DESCRIPTION

This function defines a success code and flushes the previously-defined
error message. It does not affect the rest of the ecs Result structure.

146 ¢ Chapter 6 OGDI Research Institute

int

ecs_SetText

NAME

ecs_SetText definesthe AText item with astring.
SYNOPSYS

ecs_Set Text (r,text)
ecs_Result *r;
char *text;

ARGUMENTS

r isapointer to apreviousy-defined structure.
text isthe string that holds the text.
DESCRIPTION

Thisfunction defines the AText item with a string.

SEE ALSO
ecs AddText

OGDI Research Institute

148 ¢

Chapter 6

int

ecs_SplitList
NAME
ecs_SplitList splitsalist into its constituent fields.

SYNOPSYS

ecs_SplitList(list, argcPtr, argvPtr)
char *list;

int *argcPtr

char ***argvPtr

ARGUMENTS
list isapointer to astring with alist structure.

argcPtr isapointer to the location that indicates the number of elementsin
thelist.

argvPtr isapointer to aplaceto storeapointer to an array of pointersto list
elements.

DESCRIPTION

Thisfunction splitsalist into its constituent fields. The returned value is
normally TRUE, which meansthat thelist was successfully split. I1f FALSE
isreturned, it meansthat list did not have the proper list structure; interp-
>result containsamore detailed error message. ArgvPtr containsthe address
of an array whose elements point to the elements of list, in order.* argcPtr
contains the number of valid elementsin the array. A single block of
memory isdynamically allocated to hold both the argv array and a copy of
thelist (with backslashes and braces removed in the standard way). The
caller must eventually freethismemory by calling free()on *argvPtr. Note:
*argvPtr and * argcPtr are only modified if the procedure returns the value
TRUE.

SEE ALSO

ecs SplitURL, ecs BackSlash, ecs freeSplitURL, ecs FindElement,
ecs CopyAndCollapse

OGDI Research Institute

int

ecs_SplitURL
NAME

ecs_SplitUrl extracts information from the URL and returnsit in the
arguments.

SYNOPSY S

textbfecs_SplitURL(textiturl, machine, server, path)
char *url;

char **machi ne;

char **server;

char **path;

ARGUMENTS
url isthe string containing the URL.

machine isthe machine addresscontainingthe URL. If NULL, theserveris
local.

server iSthe server type of the DLL to be loaded.

path isthe string used by the dynamic database library to set the database
server. Thisstring is specific to each kind of server.

DESCRIPTION

This function extracts information from the URL and returnsit in the form
of arguments.

SEEALSO

ecs_freeSplitURL, ecs BackSlash, ecs FindElement,
ecs CopyAndCollapse, ecs SplitList

OGDI Research Institute

EcsGetRegError

NAME

EcsGetRegError returns an error message.
SYNOPSYS

char * EcsGetRegError()

ARGUMENTS
None nO arguments are required.
DESCRIPTION

Thisfunction isinvoked by EcsRegExec or EcsRegComp when an error
occurs. Thisfunction is similar to EcsRegError except that it does not
contain the error string itself.

SEE ALSO
EcsRegComp, EcsRegError, EcsGetRegError, ecs GetRegex

150 ¢ Chapter 6 OGDI Research Institute

EcsRegComp
NAME
EcsRegComp compilesaregular expression into internal code.

SYNOPSYS

ecs_regexp * EcsRegComp(exp)

char *exp;
ARGUMENTS
exp Isthe string containing the regular expression.
DESCRIPTION

This function compiles aregular expression string into the internal form
used for efficient pattern matching. The return value is atoken for this
compiled form, which can be used in subsequent callsto EcsRegExec. If an
error occurs while compiling the regular expression, EcsRegComp returns
the value NULL.

EXAMPLE

static ecs_regexp * extractor;

extractor = EcsRegComp("([0-9]+) *([a-z]+)");

| Now the extractor contains the regular expression in internal formfor
efficient pattern matching.

SEE ALSO
EcsRegExec, EcsRegError, EcsGetRegErTor, ecs GetRegex

OGDI Research Institute

EcsRegError

NAME

EcsRegError returns a message when an error occurs.
SYNOPSYS

voi d EcsRegError(string)
char *string;

ARGUMENTS
string the string that describes the error that occurs.
DESCRIPTION

Thisfunction isinvoked by EcsRegExec or EcsRegComp when an error
occurs. It savestheerror messagesoit can be seen by the codethat iscalled.

EXAMPLE

| EcsRegError("corrupted pointers’’); |

152 ¢ Chapter 6 OGDI Research Institute

EcsRegExec
NAME

EcsRegExec executesthe regular expression pattern matcher.
SYNOPSYS

int EcsRegExec(prog,string,start)
regi ster ecs_regexp *prog;
regi ster char *string;
char *start;

ARGUMENTS

prog isthe compiled regular expression returned previously by
EcsRegComp.

string isastring in the form of aregular expression pattern.

start if this string matches a portion of some other string, this argument
identifies the beginning of the larger string. If the string does not match
another string, then no * matches are allowed.

DESCRIPTION

Thisfunction executesthe regular expression pattern matcher. It returns 1 if
the string containsarange of charactersthat match regexp, 0if no matchis
found or -1if an error occurs. When searching astring for multiple matches
of apattern, it isimportant to distinguish between the start of the original
string and the start of the current search. For example, when searching for
the second occurrence of a match, the string argument might point to the
character just after the first match; however, it isimportant for the pattern
matcher to know that thisisnot the start of the entire string, so that it doesn't
alow " atoms in the pattern to match. The start argument provides this
information by pointing to the start of the overall string containing the
string. The start pointer should be lessthan or equal to the string pointer; if
the start pointer is less than the string pointer, the RegExec is a sub-string
RegExec and no * matches are allowed.

EXAMPLE
I

static int conpiled = 0;
static ecs_regexp *extractor;

OGDI Research Institute

char *full path = "Wl k 10kni;
int nsg,i;

if (!conpiled) {
extractor = EcsRegComp("([0-9]+)*([a-z]+)");
conpi led = 1;

i f (EcsRegExec(extractor, fullpath, NULL) == 0)
return FALSE;

el se
return TRUE

| The result is TRUE because 10km natches the pattern to | ook for in the
extractor.

SEE ALSO
EcsRegComp, EcsRegError, EcsGetRegError, ecs GetRegex

154 ¢ Chapter 6 OGDI Research Institute

C language macros
Utility functions implemented as C language macros

ECSRESULTTYPE(result) This macro indicates the object typein the
ecs_Result structure.

ECSRESULT(result) This macro indicates the path of the object referenced
in the structure.

ECSGEOMTYPE(result) This macro indicates the family of a geographic
object.

ECSGEOM(result) This macro indicates the path of the referenced
geographic object in the structure.

ECSAREARING(result,pos) Thismacroindicatesthe path of thestructureup
to the ring position.

ECS_SETGEOMBOUNDINGBOX(result,Ixmin,lymin,Ixmax,lymax) This
macro assigns a bounding box to a geographic object after

ecs SetGeomText, ecs SetGeomPoint,ecs SetGeomLine,

ecs SetGeomArea, ecs SetGeomMatrix or ecs SetGeomlmageisinvoked.
Thebounding box isassigned to the ecs Result structure without modifying
the current information available in the structure.

ECS_SETGEOMLINECOORD(result,position,Ix,ly) Thismacro assignsa
point (Ix,ly) at position in the known line segment of ecs Result. Thisis
done after the ecs SetGeomL ine function isinvoked.

ECS_SETGEOMAREACOORD(result,ringpos,position,Ix,ly) Thismacro
assigns apoint (Ix,ly) at the position in the ring ringpos of the areain
ecs_Result. Thisisdone after the ecs SetGeomAreaand

ecs SetGeomAreaRing functions are invoked.

ECS_SETGEOMMATRIXVALUE(result,Ipos,lval) Thismacro assignsthe
vaue lval at the position [posin the value table. Thisis done after the
ecs_SetGeomMatrix function isinvoked.

ECS_SETGEOMIMAGEVALUE(result,Ipos,lval) Thismacroassignsthevaue
lval at the position Iposin the value table. Thisis done after the
ecs SetGeomlimage function is invoked.

ECSERROR(r) Thismacro indicates whether ecs Result contains an error
code.

OGDI Research Institute

156 ¢

Chapter 6

ECSSUCCESS(r) This macro indicates whether ecs Result contains a
success code.

ECSEOF(r) Thismacro indicates whether ecs Result contains an EOF
message. It is mainly used with the cln_GetNextObject function.

ECSMESSAGE(r) Thismacro returns the error message contained in
ecs Result (astring).

ECSREGION(r) Thismacro returns the geographical region contained in
ecs Resultif ecs Result containsthis structure. The structurereturnedisa
ecs Region.

ECSTEXT(r) Thismacro returns the text string contained in ecs Result if
ecs Result contains this structure. The structure returned is a string.

ECSRASTERINFO(r) Thismacro returnstheraster information containedin
ecs Resultif ecs Result containsthisstructure. The structurereturnedisan
ecs_RasterInfo.

ECSRASTERINFONB(r) This macro returns the number of categoriesin the
ecs_RasterInfo structure contained in ecs Resullt.

ECSRASTERINFOCAT(r,c) Thismacro returns the category number ¢
contained in the ecs RasterInfo of ecs Result. The structure returned is a
ecs_Category.

ECSOBJECT(r) This macro returns the geographic object contained in
ecs Resultif ecs Result containsthisstructure. The structurereturnedisan
ecs Object.

ECSOBJECTID(r) This macro returns the Id attribute contained in the
ecs_Object structure of ecs Result.

ECSOBJECTATTR(r) Thismacro returnsthe attr attribute contained in
ecs_Object structure of ecs Result.

ECSRASTER(r) Thismacro returnsthe raster line table contained in
ecs Object.

OGDI Research Institute

Chapter 7 Driver Development

.
157
.

158 ¢

Driver Development

Chapter 7

The following chapter presents the different stagesinvolved in the
development of adriver, including a description of a Geospatia Library
Transfer Protocol Daemon (GLTPD) and itsrelation with other components
such as the port mapper and the driver.

Thefirst sections (“Programming Background” on page 159, “API function
Overview” on page 170 and “The driver's components” on page 181)
provide the necessary information that will help the programmer understand
the OGDI working concepts. It corresponds to the first phase of the
development of a driver. The review of the OGDI core technology, the data
types, the datastores, the layers and the GLTP servers are described in
“Programming Background”. The OGDI functions (API) are then described
in terms of their functionality in “API function Overview”. Additional
components of a driver are then discussed in “The driver's components” to
complete the description.

The second phase in the development of a driver is the programming task,
which is presented step by step in “Driver's programming step by step” on
page 190. Itis important to mention that this section is exclusively based on
the skeleton example driver (it can be found on the CD containing the OGDI
source code or on the LAS Website at http://www.las)c@ime skeleton is

a complete example of a custom driver, with useful commentaries in each
function header. Although its uses dummy data, it is completely functional,
and can be compiled and tested. The programmer should read all the
commentaries found in the skeleton to complete his knowledge on how a
driver should be coded.

OGDI Research Institute

Programming Background

This section presents crucial information the programmer should know
before starting the coding process of adriver. The reading of thissectionis
strongly recommended.

OGDI Research Institute

Review of the OGDI core technology

The underlying philosophy of OGDI isto encapsul ate the many tasksrelated
to geospatial datastore accessin asimple and standard API. We should
specify that OGDI usesthe C language for the portability facilitiesit offers.

When an application requires access to geospatial data, it calls functions
through the API component of OGDI. The driver connected to the needed
datastore (geospatial data format or product) isthen loaded and used to
receivetherequest, fetch the information from the datastore, trandateit into
the OGDI transient data structure, and finally return the result to the
application. Separate drivers are used for each datastore. The drivers can be
accessed directly for local datastores or remotely. For remote procedure
calls, the OGDI GLTPD is used together with a network driver to link the
application to aremote driver through a TCP/IP network.

In short, OGDI provides a datainteroperability solution to access the
growing number of geospatial data products and formats.

160 o Chapter 7 OGDI Research Institute

Data types, Datastore and Layer Definition

As mentioned earlier in this document, the OGDI data structure currently
handles two types of geospatial data which are defined as:

Vector Data, which are composed of 4 subtypes of features called families:

* Linefeatures
» Areafeatures (each composed of one or more rings)
 Point features
» Text features

The VRF (Vector Relational Format) driver isan example of adriver that
can access vector data from a datastore.

Raster Data, for information pertaining to points at regularly identified
intervals, which are composed of two subtypes of objects (families):

* Image objects
e Matrix objects

The Grass driver is an example of adriver that can access raster data and
vector data.

Thereis only one driver associated to a specific datastore (containing data
in one specific format), but some drivers can access different types of data
in different datastores (vector dataand raster data). A datastoreissituatedin
one specific location (path) and represents logically related data. The
location and the driver are defined by the URL when the client establishesa
connection. Furthermore, the datastoreisrepresented by only one projection
of aregion. Using OGDI, aclient can access different types of data,
datastores, many regions and more than one projection of each region.

To fully understand the way an object isretrieved from a datastore, it is
iImportant to know what alayer is. A layer isaset of various geographic
objects, each of a specific family. The family could be any of the following:
Area, Line, Text, Point, Matrix, etc. A family and a string form alayer
selection request. The string isa description of what to select and is defined
by the following generic form:

Dat ast or eEl ement @at ast or e(Expr essi on).

OGDI Research Institute

The expression specifies which data to retrieve and so acts as afilter. The
termsin the string could vary from one datastore to another, but the role
remains the samei.e. specifies what element should be selected from the
datastore. For example, VRF contains a string of the form:

FEATURE_NAVE@COVERAGE(REQUEST)

It defines a specific feature name (ex: roads), a coverage type (ex:
transportation) and arequest whichisthe operationto perform onthefeature
table (ex: TYPE = double_|ane).

Ex:

roads@ransportati on(roadtype = doubl eline)

162 ¢ Chapter 7 OGDI Research Institute

The GLTP server

The GLTP component of OGDI isautility program that mimicsthe behavior
of the C language API on aremote computer (see Clanguage API, on page
22). To help understand the GLTP protocol, we use the well-known
HyperText Transmission Protocol (HTTP), and make some comparisons
between the two.

GLTP isbased on the Remote Procedure Call (RPC) protocol by opposition
to HTTP that is based on its own protocol. Both GLTP and HTTP use
TCP/IR, which suppliesthe two major transport protocols: UDP and TCP. If
the client and server communicate using UDP, the interaction is
connectionless and if they use TCP, the interaction is connection-oriented.
TCP provides al thereliability needed to communicate across the internet.
By contrast, UDP offers no guaranty about reliable delivery. GLTP and
HTTP both use the TCP transport protocol.

GLTP servers are stateful, and HT TP servers are stateless. Stateful servers
keep state information (information that a server maintains about the status
of ongoing interactionswith clients) that allows them to remember what the
client requested previously and to compute an incremental response as each
new request arrives. The use of stateful servers permits more efficiency,
since keeping information in a server reduces the size of messages that the
client and server exchange, and allows the server to respond to request
quickly. The motivation to use stateless serverslies in the protocol
reliability: if a server usesincorrect state information dueto loss of data or
bad delivery, it may respond incorrectly.

OGDI Research Institute

Remote Procedure Call (RPC) concept

The remote procedure call model draws heavily from the procedure call
mechanism found in conventional programming languages. FIGURE

4. “Procedure concept” shows a conventional program consisting of a main
that calls one or more procedures which in turn can also call one or more

procedures.
main
procl proc2 proc3
proc4 proc5 proc6

FIGURE 4. Procedure concept

Computer 1
main
/\\ Computer 2
procl proc2 proc3
proc4 proc5 proc6

FIGURE 5. Extended to use RPC.

164 ¢ Chapter 7 OGDI Research Institute

The RPC model uses the same procedural abstraction as a conventional
program, but allows a procedure call to span the boundary between two
computers. FIGURE 5. “Extended to use RPC.” illustrates how the remote
procedure call can be used to divide a program into two pieces that each
execute on a separate computer.

A programmer can build a conventional program that solves a particular
problem, and then can divide the program into parts that execute on two or
more computers. When doing so, the programmer can minimize changes
and reduce the chance of introducing errors by adding stubs procedures to
the program. The stub procedures implement the necessary communication,
and allow the original calling and called procedures to remain unchanged
(see stubs in FIGURE 2. “How a network driver connects with the gltpd”

on page 25). A program called rpcgen automatically generates the stub's
code.

Unlike many TCP/IP protocols, RPC does not use a fixed format for
messages. It defines the general format of RPC messages as well as the data
items in each field using a language known as the XDR language (see
External Data Representation (XDR) concept, on page 166). Each item is
encoded using the XDR representation standard.

Sun Microsystems has defined a particular form of RPC that has become a
de facto standard. Sun RPC programs do not use well-known protocol ports
like conventional clients and servers. Instead they use a dynamic binding
mechanism called port mapper which is described in Port mapper, on page
167.

OGDI Research Institute 165

166 o

Chapter 7

External Data Representation (XDR) concept

Each computer architecture provides its own definition of data.
Programmerswho create client and server software must contend with data
representation because both endpoints must agree on the exact
representation for al data sent between them. Sun Microsystems
Incorporated devised an externa data representation (XDR) that specifies
how to represent common forms of data when transferring data across a
network. The XDR standard provides definitions for data aggregates (e.g.,
arrays and structures) aswell as for basic datatypes (e.g., integers and
character strings). XDR library routines provide conversion from a
computer’s native data representation to the external standard and vice
versa. Client and server programs can use XDR routines to convert data to
external form before sending it, and to internal form after receiving it.

OGDI Research Institute

Port mapper

To allow aclient to contact remote programs (the GLTP server in our case),

the RPC mechanism must include a dynamic mapping service. Each

machine that offers an RPC program (i.e., a server) maintains a database of
port mappings (see database in FIGURE 6. “Client-Server
communication”) and provides a mechanism that allows a caller to map
RPC program numbers to protocol ports.

Whenever a remote program begins execution, it allocates a local protocol
port that it will use for communication. The remote program then contacts
the port mapper (see FIGURE 6. “Client-Server communication”) on its
local machine and adds a pair of integers to the database: (RPC program
number, protocol port number). Once an RPC program has registered itself,
callers on other machines can find its protocol port by sending a request to
the port mapper. A caller can always reach the port mapper because the port
mapper communicates using the well-known protocol port 111. Once a
caller knows the protocol port number the target program is using, it can
contact the remote program directly.

Client Machine Server Machine
Application @ GLTP Server
@ Client request e

Proc AL Proc A2
(API function) (API funciton)

#port
e V—®,7 (@) Create child
AAEN Port Mapper

connection

RPC program i
registration i
Stubs (#prog, #porty] !

CD GLTP Child !
C Interface C Interface
OGDI Driver

= (see figure 4)

o ’—r—‘
C Comm Database @
S
[
Interface

S Interface S Interface

@O veworkormer }(: { Neworkoriver [f f
TCPIP

"""

Proc B1 ProcB2 |
(API function) (API function) |

XDR
Interface

Procedure call sequence
(program, version, procedure)

FIGURE 6. Client-Server communication

OGDI Research Institute 167

168 ¢

Chapter 7

Step 0: Once executed, the RPC program registersits (program, port) pair
in the port mapper. Thisisthe reason why the port mapper must be launched
before the GLTPd. This step is executed only once, when the GLTPd is
launched which is before any application call is made.

Step 1la: The application callsan API function. For example procedure A1.

Step 1b: The RPC mechanism sends the remote program’s number to the
port mapper and receivesin exchange the port number used to communicate
with the remote procedure. The port number is the one the RPC program
used to register itself previoudly.

Step 2: RPC uses the stubs procedure to move the called procedure to a
remote machine.

Step 3: The XDR interface encodes al RPC messagesin its standard data
format.

Step 4: The network driver isresponsible for accepting RPC messages (1P
datagrams) and for transmitting them over a specific network.

Step 5: The TCP/IP protocol suite transfers the client’s data to the server’s
network driver.

Step 6: Thenetwork driver acceptsthe messagestransferred by TCP/IPand
transmits them to the server.

Step 7: The GLTPd receives the client connection request, immediately
createsacopy of itself and returnstoitslistening mode until aclient requests
anew connection. The GLTPd child takes over the communication, loads
the driver and processes the client call.

Step 8: The RPC message is decoded by the XDR interface.

Step 9: Thedispatcher usesthe remote procedure number in the messageto
decide which stub procedure should receive thecall. In our examplethe stub
corresponding to procedure B1 is called.

Step 10: The chosen stub then calls the remote API function the client
caled (procedure B1).

Step 11: The API function on the server side is executed using the driver’s
specific function to completeitstask. Thetransient structure (ecs Result) is
then returned to the client using the reversed path (dotted arrows).

OGDI Research Institute

Firewall/Proxy server

The GLTPd server can beinstalled on a system where afirewall server or a
proxy server is present. Thereisaspecial version called the GLTPd Proxy
server (GLTPd proxy program). The GLTPd Proxy server is also across
platform product that runson UNIX and Windows. Thedistribution package
comes with an easy installation procedure.

OGDI Research Institute

170 ¢

API function Overview

Chapter 7

The C language API component is composed of 20 functions prefixed with
"cln_". Most of these functions has a svr_function counterpart (used in the
server) and adyn_function counterpart (used in the driver). When an
application makes acall to an API function, the code in this cln_function
calsthe svr_function. The svr_function then calls the corresponding
dyn_function (see Driver description, on page 187 for more details). All
these functions return the ecs_Result structure that contains the answer
related to the function call, except for cin_SetRegionCaches,
cln_LoadCache and cln_ReleaseCache, which return an integer that
indicates if the function succeeded or failed. Those three API functions are
also special because they don't have dyn_functions or svr_functions
counterparts. Thecln_LoadCachefunction callsboth cln_SelectRegion and
cln_SelectLayer to achieveitstask and cln_ReleaseCache callsthe function
cln_Releasel ayer. On the other hand, cln_SetRegionCaches doesn't call
functions on the server, so it only performs|ocal operations. See Chapter
6 Utility library, on page 107 for acomplete description of the C-API library
functions.

The OGDI API can also be accessed using the Tcl/Tk scripting language.
The Tcl/Tk library is composed of 22 functions prefixed with "ecs ". All
functions have the same name and the same behavior asthe onesin the C-
API, except for the Tcl/Tk-API function ecs_SetCache that differsin name
from the C-API function cIn_SetRegionCaches. The library also includes
two additional functions, ecs GetURLList and

ecs AssignTclAttributeCallback that are specific to the Tcl/Tk interface.
See Chapter 6 Utility library, on page 107 for a complete description of the
Tcl/Tk-API library functions.

Thefollowing sections present definitions of the 20 API functionsand of the
2 Tcl/Tk functions. All these functions are grouped by functionality.

OGDI Research Institute

Connection operations

Functions of thisgroup are used to connect (or disconnect) an application to
(from) the geographic datastore. Up to MAXCLIENT (32) connections can
be instantiated simultaneously. The presence of the hostname in the URL
specifiesif the connection islocal or remote. (See Components, on page
20)

CreateClient() createsaclient (connects to a geographic datastore).

DestroyClient() deletesaclient and unloads the associated driver from
memory. This terminates the communication with the geographic datastore.

OGDI Research Institute

Datastore information

Functions of this group give information concerning the content of the
datastore (dictionary).

GetDictionary() retrievesan [incr Tcl] applet from the driver. The appl et
describes the contents of a geographic datastore.

UpdateDictionary() returns an updated list that describes the content of a
datastore.

172 % Chapter 7 OGDI Research Institute

Bounding operations

Functions of this group are used to delimit the geographic region in the
datastore.

GetGlobalBound() specifiesthe driver’s globa geographic region.
SelectRegion() Selects the current geographic region.

OGDI Research Institute

Layer operations

Functions of this group select (or release) the current layers to work with.
Up to MAXLAYER (64) layers can be selected ssmultaneoudly.

SelectLayer() specifiesthe current layer.
ReleaselLayer() releasesalayer

174 % Chapter 7 OGDI Research Institute

Data information

Functions of this group give meta information concerning layers. The
GetRasterInfo functionis only used when developing adriver that accesses

raster data.

GetAttributesFormat() specifiestheattributeformat of thecurrently selected
vector or raster layer. (See the ecs_ObjAttribute structure in Appendix)

GetRasterInfo() gathersinformation on the currently selected raster layer.
(See ecs_Rasterinfo structure in Appendix A, “” on page 196)

OGDI Research Institute

Data extraction

Functions of this group give information concerning the objectsin the

datastore, and are used to retrieve objects. See the structure “ecs_Object” on
page 202 in Appendix A that describes all object's types available. An object
Is composed of the following: ID, attributes, bounding and data.

GetObject() retrieves the object that corresponds to the specified ID in the
currently selected layer.

GetNextObject() retrieves the next object in the currently selected layer.

GetObjectldFromCoord() retrieves the object ID string of the current layer
that is nearest to the set of specified coordinates.

176 ¢ Chapter 7 OGDI Research Institute

Projection operations

Function of this group manipulates data transformation. The driver
cartographic projection remainsthe samefor agiven datastore and thiscan't
change during asession. Thismeansthat all geographical information inthe
datastoreisin auniform projection. The SetServerProjection is generaly
not used becauseit changesthe current projection string of the datastore that
should be set by the server (driver) and not by the client. The
SetClientProjection sets the destination projection string. The source
projection isthe server’s current projection string. The data extraction
function’sgroup usesthe source and destination projection string to perform
data transformation when retrieving objects. The SetClientProjection
function doesn't havea_dyn function counterpart. (See Projection, on page
27 for more information concerning projections)

GetServerProjection() returnsthe server’s (datastore’s) current projection
string.

SetClientProjection() specifiesthe client’s projection string.
SetServerProjection() specifies the current projection string of the driver.

OGDI Research Institute

Language definition

This API function isn't implemented yet. Only English messages are
available on the server.

SetServerLanguage() specifiesthe language in which the server returns
information.

178 ¢ Chapter 7 OGDI Research Institute

Cache operations

Functions of this group are used to load all the data of alayer regionin a
cache memory to minimize dataaccesstime. The cacheisontheclient side.
These functions don't return an ecs Result structure, they simply return an
Integer to indicate a success or afailure. They don't have dyn_functions
counterparts.

SetRegionCaches() or SetCache() specifiesthe geographic region occupied
by caches.

LoadCache | oads datafor the region set by the esc_SetRegionCaches
command.

ReleaseCache() deletesthe cache related to a coverage stored by the
cln_L oadcache command.

OGDI Research Institute

Tcl/Tk specifics

Functions of thisgroup are only used in TCL/TK applications. These
functions don't have dyn_functions counterparts.

AssignTclAttributeCallback() specifiesaTcl callback procedure whichis
called during calls to GetObject, GetNextObject and GetAttributesFormat.

GetURLList() specifiesthelist of currently-established connections to
geospatial datastores.

180 ¢ Chapter 7 OGDI Research Institute

The driver’'s components

This section introduces the three most important structures used by the
driver. Furthermoreit gives a detailed description of adriver and showsthe
connection between the files needed to build and compile adriver.

OGDI Research Institute

182 ¢

Chapter 7

Ecs_Server structure

The ecs_Server structureis very important because it contains al the
driver'sinformation. Asyou will see, this structure iswidely used in the
server and in the driver. The ecs_Server structure contains many attributes
thedriver programmer needsto know. Hereisthelist of the attributesinside
ecs_Server that need to be initialized and used by the driver.

void *priv the private geographic information of the driver.

int currentLayer the current layer in usein the driver.

ecs_Region currentRegion the current region of the geographic driver.
ecs_Region globalRegion the global region of the geographic driver.

char *projection the projection string in casethe projectionisundefined in
the driver.

ecs_Result result returned structure to the OGDI user.

All geographic information is handled by this structure. However, thisis
global information and most of the drivers need to keep more information.
For that reason, there is a private structure in ecs_Server. Thisissmply a
pointer to the private information structure handled by the driver. The
programmer is responsible for the memory allocation and deallocation of
this private structure. There is an example in skeleton.h
(ServerPrivateData).

The server handles the following attributes. They must not be modified by
the driver.

char *hostname the hostname extracted from the URL.
char *server_type the server type extracted from the URL.
char *pathname the path name extracted from the URL.

ecs_RasterConversion rasterconversion:used to convert rastersin the
driver.

ecs_Layer *layer thetable of thelayer in usein the driver.
int nblayer quantity of layersin layer.

OGDI Research Institute

The structure also contains al the pointers to the driver functions
(dyn_functions) and the driver must not modify them.They are handled by
the server and thiswill be explained in Data extraction, on page 176.

OGDI Research Institute

The ecs_Layer structure

Each time arequest is passed to the SelectLayer function, astructure called
layer structure is created in memory. A layer structure contains all the
necessary information to handle aset of geographic data, whatever the type.
To handle alayer and its related information, the OGDI provides three
Important functions:

ecs_SetLayer createsalayer inthe driver and returnsits number.
ecs_GetLayer checksif alayer exists and returnsits number.
ecs_FreelLayer removesalayer from the set of layers.

The layers are contained in the “layer” attribute of the ecs_Server structure.
We also know the number of layers opened and the current layer number,
which is the last layer called by ecs_SelectLayer. Here are the attributes
available in ecs_Layer that are useful to the driver's programmer:

ecs_LayerSelection sel layer selection information.
intindex for GetNextObject the current object extracted.
int nbfeature the number of features in a layer. Optional.

void *priv the private geographic information of the geographic driver for
a geographic layer.

The ecs_Layer structure contains a pointer to handle information specific to
a driver for a particular layer. The driver's programmer must take the
memory allocation and deallocation of the structure in charge. There is an
example of this in the skeleton.h (LayerPrivateData).

184 ¢ Chapter 7 OGDI Research Institute

The LayerMethod structure

The OGDI driver uses aspecia technique to map every function related to
layer operations. The purpose of this technique isto simplify the code. In
fact, most of the functions groups use this layer structure to choose theright
function according to the current layer’s family. So the layer structure
eliminates the need to implement a big switch-case block. For example,
when the API function GetNextObject is called on a currently selected
matrix layer, the driver automatically selectsthe GetNextObjectMatrix

function to process the task.

The two dimensions layerMethod structure has the following definition:

Layer Met hod | ayer Met hod[11] = {

/* 0 */{NULL, NULL, NULL, NULL, NULL, NULL},

/* Area */{_openArealLayer, _closeArealLayer, _rew ndArealayer,
_get Next Obj ect Area, _getQbject Area, _getCbjectldArea },

/* Line */ {_openLineLayer, _closelLinelLayer, _rewi ndLineLayer,
_get Next nj ect Li ne, _get bj ectLine, _getCbjectldLine },

/* Point */{_openPointLayer, _closePointLayer, _rew ndPointLayer,
_get Next Onj ect Poi nt, _get (bj ect Poi nt, _get Obj ect|dPoint },

/* Matrix */{ _openMatrixLayer, _closeMatrixLayer, _rew ndMatrixLayer,
_get Next Qoj ect Matrix, _getCbjectMtrix, _getCbjectldMatrix },

/* I'mage */{NULL, NULL, NULL, NULL, NULL, NULL},

[* Text */{_openTextlLayer, _closeTextLayer, _rew ndTextLayer,
_get Next Obj ect Text, _get Cbj ect Text, _get CbjectldText },

/* Edge */{NULL, NULL,
/* Face */{NULL, NULL,
/* Node */{NULL, NULL,
/* Ring */{NULL, NULL,

NULL,
NULL,
NULL,
NULL,

NULL,
NULL,
NULL,
NULL,

NULL,
NULL,
NULL,
NULL,

NULL},
NULL},
NULL},
NULL}

The layerMethod variable is of type LayerMethod. The LayerMethod
structure holds every pointer to geographical accessfunctions. Followingis

its definition:
typedef struct {
| ayer f unc*open;
| ayer voi df unc*cl ose;
| ayer voi df unc*rewi nd;

| ayer voi df unc* get Next Qbj ect ;
| ayer voi df unc*get Obj ect ;

OGDI Research Institute

186 ¢

Chapter 7

| ayer voi df unc* get Qbj ect | dFr onCoor d
} Layer Met hod;

Thefirst dimension of thelayerMethod structure (index from 0 to 10) selects
thefamily. All families are defined in the ecs Family enumeration that can
be found in the header file ecs.h.

Note: Theindex O is not used.

The second dimension of the structure gives access to the layer operation
function’s pointer corresponding to the selected family. For example, to
select the close function of the Area family, the following function call
should be performed:

(Layer Met hod[Area] . cl ose) (server, |ayer);

For each family supported by the datastore, the programmer will havetofill
thisstructurewith appropriate function handlers corresponding to each layer
operation. If afamily is not present in the datastore, the programmer has to
set dl function pointersto NULL in the corresponding family. If the client
application uses alayer operation API not defined in the family, the driver
will return an error and set the error message with the following text
“FunctionName is not implemented for this family”.

OGDI Research Institute

Driver description

When an application makesacall to an API function (see FIGURE

6. “Client-Server communication” on page 167 step 1a), the code in this
function calls the svr_function that can be executed locally or remotely. For
its part, the svr_function executes basic processing and calls the
corresponding dyn_function that is defined in the driver (see FIGURE

7. "Representation of a driver (zoom of the OGDI driver of figure 6)” on
page 187). All the driver's dyn_functions are mapped in the ecs_Server
structure. The map is performed by the svr_CreateServer function. This
function also loads in memory the driver that corresponds to the URL's
driver section. (gltp://hostname(optional)/driver/path). The skeleton.c uses
object.c and open.c, through the layerMethod structure to access data in the
datastore. The driver also uses utils.c which regroups functions specific to a
particular driver, and the OGDI function library that is not included in
FIGURE 7. “Representation of a driver (zoom of the OGDI driver of figure
6)” on page 187, but defined in Chapter 6 Utility library, on page 107. The
result of the application request is sent back using the ecs_Result structure
(see Appendix A for a detailed description of the ecs_Result structure).

GLTP child
Driver
utils.c Open.c
Driver's specific Operations:
operations Open,Close,Rewind
le— le——
LayerTypes:
Area, Edge, Face, Image,
Line, Matrix, Node, Point, Datastore
. o Ring, Text
Client application e
TCP/IP » D
svr
cin_ Port mapper
oo | (D ,
@ B Skeleton.c Object.c
<
Operations: §
CreateServer Operations:
DestroyServer GetNextObiject,GetObject,
SelectLayer GetObjectlD
ReleaseLayer
ReleaseAllLayers Types:
dyn SelectRe "
N gion Area, Edge, Face, Image, ||
GetDictionary [Line, Matrix, Node, Point, [* |
GetAttributesFormat Ring, Text
GetNextObject
GetObject Other operations:
GetObjectldFromCoord
ecs Result UpdateDictionary CalcPosValue,
= A oord
@ GetGlobalBound
SetServerLanguage

FIGURE 7. Representation of adriver (zoom of the OGDI driver of figure 6)

OGDI Research Institute 187

188 ¢

Chapter 7

The driver isdivided into two parts: the usua driver part described in

driver.c and the “invisible part” that handles global operations (server.c).
That must be seen as an object oriented relationship between the server.c
and the driver. The server.c is the base class where all common operations,
common checks and calls to the driver functions are done. The driver must
be seen as an object that inherits from this base class. Because we are
working in standard C, this is not totally “Object oriented”. The functions

are seen by OGDI as pointers but the ecs_Server structure must be seen as
the base classe’s members.

If no dyn_function is defined in the driver, the server will return an error and
set the error message in ecs_Result with the following text: “FunctionName
not present in dynamic library” or do a default function processing and
return the appropriate result, depending on the function.

Here is a list of all API functions that perform default processing if they are
not defined in the driver:

» cln_SetServerProjection
* cIn_DestroyClient
All otherswill return an error message if they are not present in the driver.

The following API functions must not be defined in the driver because they
use aready defined functions to achieve their task.

cln_SetRegionCaches no server function call.
cin_LoadCache callssvr_SelectRegion and svr_SelectLayer.
cIn_ReleaseCache callssvr_Releasel ayer.

cIn_SetClientProjection callssvr_GetServerProjection and
svr_SetServerProjection.

OGDI Research Institute

Ecs_Util.h
Structures

ecs_AttributeLink

Driver’s files interactions

Datalnfo.h (optional)

DataBase Interface

Datadict.h

TCLITK applet

]

ecs_Layer Enumerations
ecs_Server
ecs_regexp ecs_Famiy
ecs_Resampling
Macros ecs_Transformation
ecs_TopoLevel
ECSRESULTTYPE ecs_AttributFormat
ECSRESULT ecs_ResultType
ECSGEOMTYPE
ECSGEOM Skeleton.h
ECSAREARING Structures
ECSERROR]) Structures
ECSSUCCESS ecs_Region ecs_AreaPrim
ECSEOF ecs_RasterConversion ecs_Geometry LayerPrivateData
ECSPROJ ecs_Coordinate ecsiob!ect‘ SeverPrivateData
ECSMESSAGE ecs_FeatureRing ecsﬁOb!Amlbule LayerMethod
ECSREGION ecs_Area ecs_ObjAttributeFormat point_data
ECSTEXT ecs_Line ecs_Category dbarcatype
ECSRASTERINFO ecsiPmn‘t ecs_Rasterinfo dblinetype
ECSRASTERINFONB ecs_Matrix ecs_Compression dbpointype
ECSRASTERINFOCAT ecs_Image ecs_ResultUnion dbtexttype
ECSOBJECT ecs_Text ecs_Result
ECSOBJECTID ecs_Node ecs_LayerSelection
ECSOBJECTATTR ecs_Edge ecs_ProxyCreateServer
ECSRASTER ecs_Face
ECSSETGEOMBOUNDINGBOX
ECSGEOMLINECOORD
ECSGEOMAREACOORD
ECSGEOMMATRIXCOORD
ECSGEOMIMAGECOORD
OGD! utility library
Openc Utits.c (optional) EcsRegComp ecs_SetGeomArea
. EcsRegExec ecs_SetGeomAreaRing
Functions Driver's specific functions EcsRegErmor ecs._SetGeomMatix
EcsGetRegEror ecs_SetGeomMatrixWithArray

int_openAreaLayer
void _closeArealayer
void _rewindAreaLayer
int_openLineLayer
void _closeLineLayer
void _rewindLineLayer
int_openPointLayer
void _closePointLayer
void _rewindPointLayer
int _openMatrixLayer
void _closeMatrixLayer
void _rewindMatrixLayer
int_openTextLayer
void _closeTextLayer
void _rewindTextLayer

ecs_DistanceObject
ecs_DistanceMBR
ecs_DistanceSegment
ecs_SetError
ecs_SetSuccess
ecs_AdjustResult
ecs_SetGeoRegion
ecs_SefText

ecs_AddText
ecs_SetRasterlnfo
ecs_AddRasterInfoCategory
ecs_SetObjAttributeFormat

ecs_SetGeomlmage
ecs_SetGeomimageWithArray
ecs_SetObjectld
ecs_SetObjectAttr
ecs_CleanUp
ecs_CleanUpObject
ecs_Resultinit
ecs_CalcObjectMBR
ecs_freeSplitURL
ecs_GetRegex
ecs_SplitURL
ecs_Backslash

ecs | rmat
ecs_SetGeomPoint
ecs_SetGeomText
ecs_SetGeomLine

ecs_FindElement
ecs_CopyAndCollapse
ecs_SplitList

Object.c

Functions

void _getNextObjectArea

void _getObjectArea

void _getObijectidArea
void _getNextObjectLine

void _getObjectLine

void _getObjectldLine
void _getNextObjectPoint

void _getObjectPoint

void _getObjectidPoint
void _getNextObjectText

void _getObjectText
void _getObjectidText

void _getNextObjectMatrix

void _getObjectMatrix

void _getObijectidMatrix

int_calcPosValue

int _getValueFromCoord

Skeleton.c
Functions
Type: ecs_Result*

dyn_CreateServer
dyn_DestroyServer
dyn_SelectLayer
dyn_ReleaseLayer
dyn_SelectRegion
dyn_GetDictionary
dyn_GetAttributesFormat
dyn_GetNextObject
dyn_GetObject
dyn_GetObjectldFromCoord
dyn_UpdateDictionary
dyn_GetServerProjection
dyn_GetGlobalBound
dyn_SetServerLanguage
dyn_ReleaseAllLayers
dyn_GetRasterlnfo

FIGURE 8. Representation of the connection between most of the files needed to

build and compile adriver.

Note: OGDI.dll isalibrary that containsall the client and server functions,

plus the utility function library (see Appendix A,
find the source code of all the C files required to construct the OGDI.dll in

the C-API directory.

on page 196). You can

OGDI Research Institute

Driver’s programming step by step
Following isapresentation of the stepsinvolved in the programming phase.

Note: All through the coding process, whenever needed, code all driver
specific functionsin utils.c.

In the skeleton driver’s object file, thereisa dummy datastore structure that
has to be removed.

OGDI provides utility functions and macros that will help in the
development of a driver and in data manipulation. See Appendix for a
complete description of these functions and macros.

Sep 5.4.3 and 5.4.4 could be coded simultaneously.

190 ¢ Chapter 7 OGDI Research Institute

(Step 1) Use the skeleton driver

To start the programming, use the skeleton driver that can be found on the
CD containing the OGDI source code or on the LAS Website at
http://www.las.com.

» Copy the skeleton driver source filein a directory with the name of the
new custom driver.

* Renamethefile skeleton.c with the name of the new driver. Do the same
thing with files skeleton.h and skeleton.def.

» Replace al occurrences of the word skeleton by the name of the new
driver inthefollowing files: skeleton.c, skeleton.h, skeleton.def, object.c
open.c, utils.c and makefile (Preserve the upper and lower cases).

Note: In the following steps, the word “skeleton” is replaced by “driver”.

OGDI Research Institute

(Step 2) Code the driver’s function

Codethedyn_functionsinthe driver.c. API function Overview, on page
170 suggests a possible order of operation when devel oping the functions of
adriver, with the exception of the functionsin Cache operations, on page
179 and Tcl/Tk specifics, on page 180, which don't have to be redefined in
the driver.

Fill the layerMethod structure with the appropriate type used by this driver
(see The LayerMethod structure, on page 185).

For each dyn_function, add the specific driver procedure that will achieve
the function task.

192 ¢ Chapter 7 OGDI Research Institute

(Step 3) Code the datastore function library

The purpose of adatalibrary isto abstract the OGDI driver from data
retrieving operation code and it poses as an interface between the driver and
the datastore. The datastore function library will contain every function
needed to retrieve data from the datastore, so the OGDI driver will only
make simple function callsto the datastore functionslibrary. Thistechnique

will:

» simplify the OGDI driver code;
e minimize changesin the OGDI driver if the format of the datastore is

modified:;

e minimize changesin the OGDI driver if the datastore functionslibrary is

modified;

* increase the reusability of the OGDI driver code for the development of
anew driver (generalization).

Thefollowing figure summarizes the relation between the OGDI driver and
the datastore when using a datastore function library.

OGDI driver

FIGURE 9. Diagram with datastore function library

Datastore Function
Library

Datastore

In the case where all data retrieving operation code isin the OGDI driver,

the relation will become,

OGDI driver

(including the datastore
interface code)

Datastore

FIGURE 10. Diagram without the datastore function library

OGDI Research Institute

(Step 4) Code the Layer oriented-functions

See The LayerMethod structure, on page 185 for more information about
the layerMethod structure.

» Codethe_open, closeand _rewind functionsin open.c for each family.

* Codethe GetNextObject, GetObjectld and _GetObject functionsin
object.c for each family.

194 ¢ Chapter 7 OGDI Research Institute

Appendix A

495

196 ¢

Implementation Specification

Appendix A first describesthe ecs Result structure and itscomponentswith

a diagram (FIGURE 11. “Description of the ecs_Result structure and its
components”), and then explains the whole ecs_Result structure in the
following pages.

(eschesult

1 ecs_Compression compression 1
int error

string message<>
ecs ResultUnion res

1 1
ecs_ResultUnion 0 ecs_Compression
<Object, GeoRegion, objAttributeFormat, Rasterinfo, A Text, MultiResult> type m unsigned int cachesize
ecs_object dob unsigned int ctype
ecs_Region 1 unsigned int cversion
ecs_ObjAttributeFormat oaf unsigned int clevel
ecs_RasterInfo ri unsigned int cblksize
string s<> unsigned int cfullsize
ecs_ResultUnion result

-
_/
1
1 1 1 1

ecs_Object (ecs_Reglon N (ecsiObJeCLAtlrlbu(eFormal

ecs_Rasterinfo

string ld<>
ecs_Geometry geom
string attr<>

double xmin

double north long mincat
double south long maxcat
double east int width

double west T int height

ecs_Category cat<>

ecs_ObjAttribute oa<>

double ymin

double ns_res
double xmax double ew_res
doubleymax ~
1
-
1 m =
~ Ve ecs_Category

ecs_Geometry ecs_ObjAttribute

long no_cat

unsigned int r
unsigned intg
unsigned int b

<Area, Line, Point, Matrix, Image, Text,
Edge, Face, Node, Ring> family
ecs_Area area

string name<>
<Char, Varchar, Longvarchar, Decimal, Numeric,
Smallint, Integer, Real, Float, Double> type

ecs_Line line int length

ecs_Point point int precision string label<>
ecs_Matrix matrix int nullable unsigned long qty
ecs_Image image

ecs_Text text

ecs_Node node ~ \)

ecs_Edge edge
ecs_AreaPrim ring

FIGURE 11. Description of the ecs Result structure and its components

Appendix A OGDI Research Institute

Note: The symbol <> after a variable meansthat itisan array. So itssize
Is defined at run-time.

1 1 1

ecs_Area ecs_Matrix | ecs_lmage ecs_AreaPrim

ecs_FeatureRing ring<> unsigned int x<> unsigned int x<> <Level012, Level3>level
- int edgeid<>
ecs_Face fedgeid<>
-

D ——— :

1
1 1 1 1 m
(\ (ecs_Text ecs_Node ecs_Edge ecs_Face

ecs_Line ecs_Point
ecs_Coordinate ¢ || ecs Coordinate ¢ || Stfing desc<> int id int id int id
— ecs_Coordinate ¢ int containfaceld int stardnodeid int edgeid<>
ecs_Coordinate ¢ int endnodeid

— int rightfaceid

int leftfaceid
1 1 Fyl—/ int rightfedgeid
int leftfedgeid
m ecs_Coordinate c<>
ecs_FeatureRing \

ecs_Coordinate centroid 1
ecs_Coordinatec<>

[y —
1

m

m 1
ecs_Coordinate

1 | double x
doubley

In the following section, you will find a definition of every structure
presented in FIGURE 11. “Description of the ecs_Result structure and its
components”.

OGDI Research Institute

198 ¢

ecs_Result

Itiscommon to all the C APl commands and contains al the possible
answers. The contents of ecs Result vary depending of the nature of the
answers. For example, the structure could contain a string, alist of
attributes, a geographical object, etc.

ecs_Compression compression

This attribute contains the compression type of the current object. (see
below for more details related to this structure)

int error

This attribute returns an error code. It could be 0 (ECS_SUCCESS), 1
(ECS_ERROR), 2 (End of selection) or 3 (an error appears in an object
extraction but continues the extraction).

string message<>

Application
T ar T

/ Interface

C Interface ‘
Remote Procedure Call
Direct
Procedure Network
Call Driver
TCP/IP
Network

gltpd

/

Driver

Appendix A OGDI Research Institute

Thisisan optiona message that could be returned if an error occurs. It
provides a more precise description of the problem.

ecs_ResultUnion res

This attribute handles al the different types of object the OGDI could
return. (see below)

OGDI Research Institute

ecs_Compression

This structure contains the necessary parameters to transfer compressed
Information across the net. It aso defines the parameters that allow the
transfer of many blocks of information in one operation (MultiResult).

unsigned int cachesize

The maximum size of ecs Result objects a block could contain for
MultiResult. The MultiResult is an attribute of ecs ResultUnion used as a
buffer of geographical objects.

unsigned int ctype

The compression type used during the transfer: 0 for no compression, 1 for
Zip compression.

unsigned int cversion

The compression type version.

unsigned int clevel

The level of compression, could be 10 9.
unsigned int cblksize

The number of bytesto compress at atime.
unsigned int cfullsize

Used by the server. Not currently used in the compression.

200 ¢ Appendix A OGDI Research Institute

ecs_ResultUnion

Thisstructure handlesthe different typesof information that can be returned
by the OGDI. This structure is aunion that allows only one structure
attribute to be used at the time.

ecs ResultTypetype

Indicates the type of data contained in this structure which could be
SimpleError, Object, GeoRegion, objAttributeFormat, Rasterinfo, Atext,
MultiResult. Each of these types will indicate which attribute of this
structure will be used. (see below)

ecs Object dob

The Geographic Object structure. (see below)
ecs Region gr

The Geographic Region structure. (see below)
ecs_ObjAttributeFormat oaf

The Object Attribute Format structure. (see below)
ecs Ragterinfo ri

The Raster Information structure. (see below)
string s<>

A string structure

ecs_ResultUnion results<>

In case of MultiResult, this structure contains more than one
ecs ResultUnion structure for the transfer across the network. (see below)

OGDI Research Institute

ecs_Object

Contains a geographic object. This structure contains the common
information to al geographic objects.

string id<>
The object identifier
ecs_(GGeometry geom

The geometry structure of the object. (see below for more details related to
this structure)

string attr<>

The attribute list.

double xmin

The western limit of the geographical object.
double xmax

The eastern limit of the geographical object.
double ymin

The southern limit of the geographical object.
double ymax

The northern limit of the geographical object.

202 ¢ Appendix A OGDI Research Institute

ecs_Region

Contains the limits of a geographic region

double north
double south
double east
double west

Usually thisis known as the minimum bounding rectangle around aregion.

double ns res

Containsthe size of the north-south extent of apixel in the same coordinate
system than the region.

double ew_res

Step 1. Network Driver requests connection to gltpd

network driver

e gltpd

Step 2. gltpd creates a new thread (or fork) of itself

network driver

— gltpd

L.

new gltpd

Step 3. new gltpd takes over communication and loads driver

network driver

gltpd

T

new gltpd

)

driver

OGDI Research Institute

Contains the size of the east-west extent of a pixel in the same coordinate
system than the region.

204 ¢ Appendix A OGDI Research Institute

ecs_ObjectAttributeFormat

Containsthelist of the object attribute format descriptors of the ecs Object
attribute "attr".

ecs_ObjAttribute oa<>

The list of attribute format descriptors. (see below)

ecs ObjAttribute

The attribute format descriptor of one attribute.

string name<>

The name of the attribute format descriptor.

ecs ObjAttibuteFormat type

The attribute type descriptor which could be Char, Varchar, Longvarchar,
Decimal, Numeric, Smallint, Integer, Real, Float and Double. (see below)

int length

The attribute length. For a string, it contains the maximum length of the
string.

int precision
The attribute precision, mainly used for float and double information.
int nullable

Indicates if the valueis nullable or not.

OGDI Research Institute

ecs_Rasterinfo
Contains the information related to one salected raster.

long mincat

long maxcat

The minimum and maximum categories of the category table.
int width

int height

The width and height of the raster.

ecs_Category cat<>

The category table (see below)

206 ¢ Appendix A OGDI Research Institute

ecs_Category
The description of one category in the category table of ecs RasterInfo.

long no_cat

The current category number.

unsignedint r

unsigned int g

unsigned int b

The category default color.

string label<>

The label of the category.

unsigned long qty

The number of pixels of this category in the matrix (optional).

OGDI Research Institute

208 ¢

ecs_Geometry

The geometry structure of a geographic object that contains a union of all
the different types of possible geographic objectsin OGDI.

ecs_Family family

The current object family which could be Area, Line, Point, Text, Matrix,
Image, Edge, Face, Node and Ring. (see below)

ecs Areaarea

An area object geometry description. (see below)
ecs Lineline

A line object geometry description. (see below)
ecs Point point

A point object geometry description. (see below)
ecs_Matrix matrix

A matrix object geometry description. (see below)
ecs_Image image

An image object geometry description. (see below)
ecs Text text

A text object geometry description. (see below)
ecs_Node node

A node object geometry description. (see below)
ecs Edge edge

An edge object geometry description. (see below)
ecs AreaPrimring

A ring object geometry description. (see below)

Appendix A OGDI Research Institute

ecs_Area

An areaisaset of ringsthat form acomplex areafeature. Thefirst areais
considered as the main area and the others asislands.

ecs_FeatureRing ring<>

The list of rings that form the area. (see below)

OGDI Research Institute

ecs_FeatureRing
A singlering description in the ecs Area.

ecs_Coordinate centroid
The centroid of thisring. (see below)
ecs_Coordinate c<>

Thelist of points that form the ring. (see below)

210 ¢ Appendix A OGDI Research Institute

ecs_Line
Contains a polyline geographical object.

ecs_Coordinate c<>

Thelist of pointsthat form the polyline. (see below)

OGDI Research Institute

oo

11

ecs_Point
Contains a point geographical object

ecs_Coordinate ¢
The point coordinate itself. (see below)

212 ¢ Appendix A OGDI Research Institute

ecs_Text
Contains a geographical text object. It isapoint with atext attached to it.

ecs_Coordinate ¢
The point coordinate itself. (see below)
String desc<>

The descriptor string.

OGDI Research Institute

ecs_Node
Contains a geographical point object with topology.

intid

The identifier of this point.

int containfaceid

Indicates witch face contains this point.
ecs_Coordinate ¢

The point coordinate itself. (see below)

214 ¢ Appendix A OGDI Research Institute

ecs_Edge
Contains a geographical edge object with topology.

intid

The identifier of the object

int startnodeid

The start node identifier of this edge.

int endnodeid

The end node identifier of this edge.

int rightfaceid

The identifier of the edge right face object.
int leftfaceid

The identifier of the edge |eft face object.
int rightfedgeid

The identifier of the edge right feature.

int leftfedgeid

The identifier of the edge | eft feature.
ecs_Coordinate c<>

The list of coordinates of the edge. (see below)

OGDI Research Institute

215

ecs_AreaPrim
Contains an area primitive with topological information.

<LevelO12> <Level3> level

Indicates the level of topology.

int edgeid

Theedgeidif thelevel is<Level 012> (One edge contains the entire area).
ecs_Face fedgeid<>

Thelist of faceid if the level is <Level 3>. (see below)

216 ¢ Appendix A OGDI Research Institute

ecs_Face
Contains a face object descriptor.

intid
Theidentifier of the face.
int edgeid<>

The list of edgesid that form this face.

OGDI Research Institute

ecs_Coordinate
A geographic coordinate

double x
doubley
The coordinate itsalf.

218 ¢ Appendix A OGDI Research Institute

ecs_Matrix

A matrix block. Part of alarger matrix. Usually used as a buffer of pixel
categories.

unsigned int x<>
The matrix buffer.

OGDI Research Institute

ecs_Image

Animage block. Part of alarger image. Usually used as a buffer of pixel
colors.

unsigned int x<>

The image buffer.

220 ¢ Appendix A OGDI Research Institute

Appendix B

221

222°

Tables

Appendix B

TABLE 1. list of all valid projection acronyms

code
aea
aeqd
alsk
apian
bipc
bonne
cass
cc
cea
collg
eckl
eck2
eck3
eckd
eck5
eck6

eqdc
gall
gnom
gs50
g48
hataea
labrd
laea

lee os
lcc

loxim

mbtfpp

OGDI Research Institute

description

Albers Equal Area

Azimuthal equidistant

Alaska Mod.-Stereographics
Apian Globular

Bipolar Conic

Bonne

Cassini

Central Cylindrical

Cylindrical Equal Area
Collignon

Eckert |

Eckert I1

Eckert 111

Eckert IV

Eckert V

Eckert VI

Equidistant Cylindrical
Equidistant Conic

Gall (Stereographic)

Gnomonic

50 State U.S. Mod.-Stereographic
48 State U.S. Mod.-Stereographic
Hatano Asymmetrical Equa Area
Laborde

Lambert Azimuthal Equal Area
Lambert Equal Area Conic

Lee Oblate Stereographics Paci_c
Lambert Conformal Conic
Loximuthal

LANDSAT Space Oblique Mercator
McBryde-Thomas Flat-Polar Parabolic

code
mbtfps
mbtfpq
merc
mill
mil os
moll
mtm
nsper
nzmg
ocea
omerc
ortho
parab
poly
putp2
putp5
quau
robin
sinu
stere
tec
tcea
tmerc
tpers
ups
utm
vandg
winkl

description

McBryde-Thomas Flat-Polar Sinusoidal

McBryde-Thomas Flat-Polar Quartic
Mercator
Miller

Miller Oblate Stereographics Eur-Africa

Mollweides

Mercator Transverse Modi___ee (Quebec)

General Vertical Persepective
New Zeadand Map Grid
Oblique Cylindrical Equal Area
Oblique Mercator
Orthographic

Caster Parabolic

Polyconic (American)

Putnins P2

Putnins P5

Quartic Authalic

Robinson

Sinusoidal

Stereographic

Transverse Central Cylindrical
Transverse Cylindrical Equal Area
Transverse Mercator

Tilted Perspective

Universal Polar Stereographic
Universal Transverse Mercator
Van der Grinten

Winkel 1

OGDI Research Institute

224 %

Appendix B

TABLE 2. list of valid ellipsoids

code
MERIT
SGS85
GRS80
IAU76
ary
APL4.9
NWL9D
mod
andrae
aust SA
GRS67
bessel
bess nam
clrk66
clrk80
CPM
delmbr
engelis
evrst30
evrst48
evrst56
evrst69
evrstSS
fschr60
fschr60m
fschr68
helmert
hough
intl
krass
kaula
MERIT
SGS85

OGDI Research Institute

description

MERIT1983

SGS85

GRS1980(IUGG)

IAU1976

Airy1830
Appl.Physics.1965

Nava WeaponsL ab.

airy Modi_edAiry
Andrael876(Den.)
AustralianNat|& S.Amer.1969
GRS67(1UGG1967)

Bessel 1841

Bessel 1841(Namibia)
Clarke1866
Clarke1880mod.
Comm.desPoidsetM esures1799
Delambre1810(Belgium)
Engelis1985

Everest1830

Everest1948

Everest1956

Everest1969
Everest(Sabah& Sarawak)
Fischer(MercuryDatum)1960
Modi_edFischer1960
Fischer1968

Helmert1906

Hough

I nternational 1909(Hayford)
Krassovsky

Kaulal961

MERIT1983

SGS85

code
GRS80
IAU76
ary
APL4.9
NWL9D
mod
andrae
aust SA
GRS67
bessel
bess nam
clrk66
clrk80
CPM
delmbr
engelis
evrst30
evrst48
evrst56
evrst69
evrstSS
fschr60
fschr60m
fschr68
helmert
hough
intl
krass
kaula
lerch
mprts
new intl
plessis
SEasia

description
GRS1980(IUGG)

IAU1976

Airy1830
Appl.Physics.1965

Nava WeaponsL ab.

airy Modi_edAiry
Andrael876(Den.)
AustralianNat|& S.Amer.1969
GRS67(1UGG1967)

Bessel 1841

Bessel 1841(Namibia)
Clarke1866
Clarke1880mod.
Comm.desPoidsetM esures1799
Delambre1810(Belgium)
Engelis1985

Everest1830

Everest1948

Everest1956

Everest1969
Everest(Sabah& Sarawak)
Fischer(MercuryDatum)1960
Modi_edFischer1960
Fischer1968

Helmert1906

Hough

International 1909(Hayford)
Krassovsky

Kaula1961

Lerch1979
Maupertius1738
NewInternational 1967
Plessis1817(France)
SoutheastAsia

OGDI Research Institute

code

walbeck
WGS60
WGS66
WGS72
WGSs4

description
Walbeck
WGS60
WGS66
WGS72
WGS84

TABLE 3. list of valid units

code
km
m
dm
cm
mm
kmi

ft

yd

mi
fath
ch
link
us-in
us-ft
us-yd
us-ch
us-mi
ind-yd
ind-ft
ind-ch

226 ¢ Appendix B OGDI Research Institute

description

Kilometer

Meter

Decimeter

Centimeter

Millimeter

International Nautical Mile
International Inch
International Foot
International Yard
International Statute Mile
International Fathom
International Chain
International Link

U.S. Surveyor’s Inch

U.S. Surveyor’s Foot

U.S. Surveyor’s Yard
U.S. Surveyor's Chain
U.S. Surveyor’s Statute Mile
Indian Yard

Indian Foot

Indian Chain

Appendix C

Datum change of the OGDI

To use the datum change in the OGDI, the geographical driver must first
have a projection with an extension describing the datum to use. Right now,
the available datum are nad27 and nad83. To set the datum, ssmply add to
the projection string the attribute « datum ».

Example :

+proj =l ongl at +dat unm=nad83

In the local machine, an environment variable OGDIDATUM must be set to
the directory where the tables are set. In Grassland, the directory is
/Grassland/nadfiles.

For the OGDI local projection, the things are a little more complex. First of
all, to set the datum, it's exactly like the projection string in the geographical
driver. However, the table must be set in order to convert the coordinates.
The attribute to add in the projection string is «datumconv » with the table
name. The module used to convert the points will be choose by the choice
of the table. If it's Canada, the driver used to make the conversion will be
dtcanada.dll. For all the other tables, the driver will be dtusa.dll. If the table
attribute in the projection is not set, the default table will be « conus ».

Example :

+proj =l ongl at +dat unrnad27 +datunconv=conus

When the converter know all these informations, other points must be
considered before the datum conversion. First, the datum are optional but if
they are not set in one of the projection, no datum conversion will be made.
If both datum are defined but are the same, no datum conversion will be
made either. If the datum are different, the conversion will be made only for
the points inside the conversion table region. That mean, in a Canadian

table, the pointsin Canadawill be convert but the point outside will not.
That don’t mean the other geographics object are not selected, that mean the
datum conversion will not apply for them.

228 ¢ Appendix C OGDI Research Institute

Appendix D

BIBLIOGRAPHY

Douglas E. Comer, David L. Stevens; 1993; Internetworking with TCP/IP Vol. I11: Client-
Server Programming and Applications; Prentice Hall; 485p.

230 ¢ Appendix D OGDI Research Institute

Index

A

ADRG 17
APl 16, 17
API function Overview 170

application programming interface 16

ARC/INFO 17
Areafeatures 161
ASCII 26

AText 42
Autocad 17

C

c va 45

CADRG 17

cartographic projection 27
client 24

client/server 25

Clientld 36
cln_CreateClient 36, 38
cln_GetClientldFromURL 38
cln_GetNextObject 39
cIn_LoadCache 40
cln_ReleaseCache 40
cin_Releasel ayer 39
cln_SelectLayer 36, 39
cln_SelectRegion 37, 39
cln_SetClientProjection 36
cln_SetRegionCaches 40
Connection Operation 171

D
Datastore information 172

DGN 17
DIGEST 16

Dlgital Geographic information Exchange

STandard 16
DLG-3 17
driver's components 181
Driver'sfilesinteractions 189

Driver's programming step by step 190

DTED 17

DWG 17

DXF 17
dyn_function 170

E

ecs Aread4

ecs_Coordinate 30
ecs_Coordinates 45

ecs Geometry 43, 44
ecs_Geometry_u 44

ecs_Init 73

ecs_Layer structure 184
ecs_Object 43
ecs_ObjectAttributeFormat 47
ecs RasterInfo 48

ecs Result 36, 41, 42

ecs ResultType 42
ecs_ResultUnion.type 42

ECS SUCCESS 42

ecs tcl.c 41

establishing a connection 24
ew_res 31

External Data Representation 166

232 ¢

F

Firewall/Proxy server 169
fork 25

freeware 17

G

geometric functions 108

Geospatial Library Transfer Protocol

Daemon 158
GeoTIFF 17
GIS 16
gltp 26
GLTP server 163
GLTPD 158, 160
GLTPd 168
gltpd 25
GLTPd Proxy 169
GRASS 26

H

hostname 26
HTTP 163
HyperText Transmission Protocol 163

Image objects 161
incr Tcl 54
Intergraph 17
Internet 25
ISOTC/211 16

J
John Ousterhout 23, 73

L

LAS Website 158

layer functions 108
LayerMethod structure 185
Line features 161

Linux 17

M

Mapinfo 17
Matrix objects 161

MAXCLIENT 171
Microsoft 17

MID/MIF 17

miscellaneous functions 108

N

no_cat 48
ns res 31

O

oa len 47

OGDI 16

OGDI library 34

ONC RPC 4.0 protocol 25

P

plug & play 18
Point features 161
Port mapper 167

R

regular expression functions 108
Remote Procedure Call 164
remote procedure call 165
results preparation functions 108
ring_len 44

ring_val 44

rings 30

RPC 164, 168

rpcgen 165

S

skeleton driver 191

Solaris 17

Spatial Data Transfer Specification 16
STDS 17

svr_function 170

T

Tcl 7.4 73

Tcl callback 75
Tcl/Tk APl 72, 78
Tcl_Applnit() 73
TclProc 75

Tclvar 75

TCP/IP 17, 25, 163
Text features 161
Tk4.073

TKNT 73

U

Uniform Resource L ocators 26
UNIX 17

URL 38

USGS 17

Vv

Vector Relational Format 17
VRF/VPF 17

w

Windows 95 17
Windows NT 17
World Wide Web 18

X

x_len 45
XDR 165

	OGDI
	Programmer Reference
	Revision 1.0
	Version 3.0
	Document No. OGDI-RI-98001
	May 1998
	 Copyright 1998 OGDI RI

	DOCUMENT REVISION HISTORY

	 Preface
	Preface
	Organization of this manual
	Chapter 1 Introduction to OGDI
	Chapter 2 C language API reference
	Chapter 3 Tcl/Tk API reference
	Chapter 4 Utility library reference
	Chapter 5 Driver Development Reference

	Audience
	Conventions
	Credits
	Copyright and License
	 Contents

	 Chapter 1 � Introduction
	Introduction
	Theory of Operation
	The interface provides the following three types of function calls:
	1 a low-level C language API;
	2 a high-level Tcl/Tk scripting language API; and
	3 a library of C language utility functions to facilitate driver development.

	Components
	Application
	Tcl/Tk API
	C language API
	Drivers
	Network Driver
	gltpd
	FIGURE 1.� OGDI's basic architecture

	Application
	C language API
	Tcl/Tk API
	Drivers
	Network driver, gltpd, Clients and Servers
	FIGURE 2.� How a network driver connects with the gltpd

	Uniform Resource Locators
	Projection
	+proj=name
	+R=R
	+ellps=acronym
	+a=a
	+es=e
	+R_A
	+R_V
	+R_a
	+R_lat_a=o
	+R_lat_g=o
	+x_0=x
	+y_0=y
	+lon_0=l
	+lat_0=l
	+units=name
	+geoc
	+over
	+zone=n

	Data Model
	Vector Data
	which are composed of 4 subtypes of features (and divided into 3 subtypes of primitives which are...
	1 Line Features;
	2 Area Features (each composed of one or more rings);
	3 Point Features; and
	4 Text Features.
	Matrix Data (Rasters)
	Line Feature
	Area Feature
	Point Feature
	Text Feature
	Matrix Feature
	Geographic Region

	Basic application steps
	FIGURE 3.� Basic OGDI application steps

	 Chapter 2 � C language API
	C Language API
	How can OGDI be used in an application?
	ClientId
	Coverage and Region Selection
	Caching
	Result and Error Handling: ecs_Result
	ecs_Object
	ecs_Geometry
	ecs_Region
	ecs_RasterInfo

	 Chapter 3 � C Language API Commands
	C Language API Commands
	cln_CreateClient
	cln_CreateClient
	ReturnedID
	URL

	cln_DestroyClient
	cln_DestroyClient
	ClientID

	cln_GetAttributesFormat
	cln_GetAttributesFormat
	ClientID

	cln_GetDictionary
	cln_GetDictionary
	ClientID

	cln_GetGlobalBound
	cln_GetGlobalBound
	ClientID

	cln_GetNextObject
	cln_GetNextObject
	ClientID

	cln_GetObject
	cln_GetObject
	ClientID
	Id

	cln_GetObjectIdFromCoord
	cln_GetObjectIdFromCoord
	ClientID
	coord

	cln_GetRasterInfo
	cln_GetRasterInfo
	ClientID

	cln_GetServerProjection
	cln_GetServerProjection
	ClientID

	cln_LoadCache
	cln_LoadCache
	ClientID
	ls
	error_message

	cln_ReleaseCache
	cln_ReleaseCache
	ClientID
	ls
	error_message

	cln_ReleaseLayer
	ClientID
	ls

	cln_SelectLayer
	ClientID
	ls

	cln_SelectRegion (OGDI)
	cln_SelectRegion
	ClientID
	gr

	cln_SetClientProjection
	cln_SetClientProjection
	ClientID
	projection

	cln_SetRegionCaches
	cln_SetRegionCaches
	ClientID
	GR
	error_message

	cln_SetServerLanguage
	cln_SetServerLanguage
	ClientID
	language

	cln_SetServerProjection
	cln_SetServerProjection
	ClientID
	projection

	cln_UpdateDictionary
	cln_UpdateDictionary
	ClientID
	info

	 Chapter 4 � Tcl/Tk API
	Tcl/Tk API
	Using the Extension with Tcl
	Creating a Tcl Attribute-Callback Procedure

	 Chapter 5 � Tcl/Tk API Commands
	Tcl/Tk API Commands
	ecs_AddAttributeFormat
	ecs_AddAttributeFormat
	r
	name
	type
	length
	precision
	nullable
	ecs_AssignTclAttributeCallback
	ecs_AssignTclFunction
	URL
	tclProc

	ecs_BackSlash
	ecs_BackSlash
	src
	readptr

	ecs_CreateClient
	ecs_CreateClient
	URL
	not able to understand this url
	not able to open the dynamic library

	ecs_DestroyClient
	ecs_DestroyClient
	URL

	ecs_GetAttributesFormat
	ecs_GetAttributesFormat
	URL

	ecs_GetDictionary
	ecs_GetDictionary
	URL

	ecs_GetGlobalBound
	ecs_GetGlobalBound
	URL

	ecs_GetNextObject
	ecs_GetNextObject
	URL
	var

	ecs_GetObject
	ecs_GetObject
	URL
	Id
	TclVar

	ecs_GetObjectIdFromCoord
	ecs_GetObjectIdFromCoord
	URL
	x
	y

	ecs_GetRasterInfo
	ecs_GetRasterInfo
	URL

	ecs_GetServerProjection
	ecs_GetServerProjection
	URL

	ecs_GetURLList
	ecs_GetURLList
	none

	ecs_LoadCache
	ecs_LoadCache
	URL
	family
	coverage

	ecs_ReleaseCache
	ecs_ReleaseCache
	URL
	family
	coverage

	ecs_ReleaseLayer
	ecs_ReleaseLayer
	URL
	Family
	Coverage

	ecs_SelectLayer
	ecs_SelectLayer
	URL
	family
	coverage

	ecs_SetCache
	ecs_SetCache
	URL
	Region

	ecs_SetClientProjection
	ecs_SetClientProjection
	URL
	projection

	ecs_SetServerLanguage
	ecs_SetServerLanguage
	URL
	number

	ecs_SetServerProjection
	ecs_SetClientProjection
	URL
	projection

	ecs_SelectRegion
	ecs_SelectRegion
	URL
	Region

	ecs_UpdateDictionary
	ecs_UpdateDictionary
	URL
	dictionaryString

	 Chapter 6 � Utility library
	Utility Library
	The following list shows all the functions and macros available in the library:
	1 Geometric Functions
	2 Results Preparation Functions
	3 Regular Expression Functions
	4 Miscellaneous Functions
	5 Layer Functions
	6 Macros

	Functions
	ecs_AddRasterInfoCategory
	ecs_AddRasterInfoCategory
	r
	no_cat
	red
	green
	blue
	label
	qty

	ecs_AddText
	ecs_AddText
	r
	text

	ecs_AdjustResult
	ecs_AdjustResult
	r

	ecs_CalcObjectMBR
	ecs_CalcObjectMBR
	s
	r

	ecs_CleanUp
	ecs_CleanUp
	r

	ecs_CleanUpObject
	ecs_CleanUpObject
	r

	ecs_CopyAndCollapse
	ecs_CopyAndCollapse
	count
	src
	dst

	ecs_DistanceMBR
	ecs_DistanceMBR
	x1
	y1
	xu
	yu
	posx
	posy

	ecs_DistanceObject
	ecs_DistanceObject
	obj
	X
	Y

	ecs_DistanceSegment
	ecs_DistanceSegment
	x1
	y1
	xu
	yu
	posx
	posy

	ecs_FindElement
	ecs_FindElement
	list
	elementPtr
	nextPtr
	sizePtr
	bracePtr

	ecs_FreeLayer
	ecs_FreeLayer
	s
	layer

	ecs_freeSplitURL
	ecs_freeSplitURL
	machine
	type
	path

	ecs_GetLayer
	ecs_GetLayer
	s
	sel

	ecs_GetRegex
	ecs_GetRegex
	reg
	index
	chaine

	ecs_ResultInit
	ecs_ResultInit
	r

	ecs_SetError
	ecs_SetError
	r
	errorcode
	error_message

	ecs_SetGeomArea
	ecs_SetGeomArea
	r
	length

	ecs_SetGeomAreaRing
	ecs_SetGeomAreaRing
	r
	position
	length
	centroid_x
	centroid_y

	ecs_SetGeomImage
	ecs_SetGeomImage
	r
	size

	ecs_SetGeomImageWithArray
	ecs_SetGeomImageWithArray
	r
	size
	array

	ecs_SetGeomLine
	ecs_SetGeomLine
	r
	length

	ecs_SetGeomMatrix
	ecs_SetGeomMatrix
	r
	size

	ecs_SetGeomMatrixWithArray
	ecs_SetGeomMatrixWithArray
	r
	size
	array

	ecs_SetGeomPoint
	ecs_SetGeomPoint
	r
	x
	y

	ecs_SetGeomText
	ecs_SetGeomText
	r
	x
	y
	desc

	ecs_SetGeoRegion
	ecs_SetGeoRegion
	r is a pointer to a previously-defined structure.
	east
	south
	west
	ns_res
	ew_res

	ecs_SetLayer
	ecs_SetLayer
	s
	sel

	ecs_SetObjAttributeFormat
	ecs_SetObjAttributeFormat
	r

	ecs_SetObjectAttr
	ecs_SetObjectAttr
	r
	attr

	ecs_SetObjectId
	ecs_SetObjectId
	r
	id

	ecs_SetRasterInfo
	ecs_SetRasterInfo
	r
	width
	height

	ecs_SetSuccess
	ecs_SetSuccess
	r

	ecs_SetText
	ecs_SetText
	r
	text

	ecs_SplitList
	ecs_SplitList
	list
	argcPtr
	argvPtr

	ecs_SplitURL
	ecs_SplitUrl
	url
	machine
	server
	path

	EcsGetRegError
	EcsGetRegError
	None

	EcsRegComp
	EcsRegComp
	exp

	EcsRegError
	EcsRegError
	string

	EcsRegExec
	EcsRegExec
	prog
	string
	start

	C language macros
	ECSRESULTTYPE(result)
	ECSRESULT(result)
	ECSGEOMTYPE(result)
	ECSGEOM(result)
	ECSAREARING(result,pos)
	ECS_SETGEOMBOUNDINGBOX(result,lxmin,lymin,lxmax,lymax)
	ECS_SETGEOMLINECOORD(result,position,lx,ly)
	ECS_SETGEOMAREACOORD(result,ringpos,position,lx,ly)
	ECS_SETGEOMMATRIXVALUE(result,lpos,lval)
	ECS_SETGEOMIMAGEVALUE(result,lpos,lval)
	ECSERROR(r)
	ECSSUCCESS(r)
	ECSEOF(r)
	ECSMESSAGE(r)
	ECSREGION(r)
	ECSTEXT(r)
	ECSRASTERINFO(r)
	ECSRASTERINFONB(r)
	ECSRASTERINFOCAT(r,c)
	ECSOBJECT(r)
	ECSOBJECTID(r)
	ECSOBJECTATTR(r)
	ECSRASTER(r)

	 Chapter 7 � Driver Development
	Driver Development
	Programming Background
	Review of the OGDI core technology
	Data types, Datastore and Layer Definition
	The GLTP server
	Remote Procedure Call (RPC) concept
	FIGURE 4.� Procedure concept
	FIGURE 5.� Extended to use RPC.

	External Data Representation (XDR) concept
	Port mapper
	FIGURE 6.� Client-Server communication
	Step 0:
	Step 1a:
	Step 1b:
	Step 2:
	Step 3:
	Step 4:
	Step 5:
	Step 6:
	Step 7:
	Step 8:
	Step 9:
	Step 10:
	Step 11:

	Firewall/Proxy server

	API function Overview
	Connection operations
	CreateClient()
	DestroyClient()

	Datastore information
	GetDictionary()
	UpdateDictionary()

	Bounding operations
	GetGlobalBound()
	SelectRegion()

	Layer operations
	SelectLayer()
	ReleaseLayer()

	Data information
	GetAttributesFormat()
	GetRasterInfo()

	Data extraction
	GetObject()
	GetNextObject()
	GetObjectIdFromCoord()

	Projection operations
	GetServerProjection()
	SetClientProjection()
	SetServerProjection()

	Language definition
	SetServerLanguage()

	Cache operations
	SetRegionCaches() or SetCache()
	LoadCache l
	ReleaseCache()

	Tcl/Tk specifics
	AssignTclAttributeCallback()
	GetURLList()

	The driver's components
	Ecs_Server structure
	void *priv
	int currentLayer
	ecs_Region currentRegion
	ecs_Region globalRegion
	char *projection
	ecs_Result result
	char *hostname
	char *server_type
	char *pathname
	ecs_RasterConversion
	ecs_Layer *layer
	int nblayer

	The ecs_Layer structure
	ecs_SetLayer
	ecs_GetLayer
	ecs_FreeLayer
	ecs_LayerSelection sel
	int index
	int nbfeature
	void *priv

	The LayerMethod structure
	Driver description
	FIGURE 7.� Representation of a driver (zoom of the OGDI driver of figure 6)
	cln_SetRegionCaches
	cln_LoadCache
	cln_ReleaseCache
	cln_SetClientProjection

	Driver's files interactions
	FIGURE 8.� Representation of the connection between most of the files needed to build and compile...

	Driver's programming step by step
	(Step 1) Use the skeleton driver
	(Step 2) Code the driver's function
	(Step 3) Code the datastore function library
	FIGURE 9.� Diagram with datastore function library
	FIGURE 10.� Diagram without the datastore function library

	(Step 4) Code the Layer oriented-functions

	 Appendix A �
	Implementation Specification
	FIGURE 11.� Description of the ecs_Result structure and its components
	ecs_Result
	ecs_Compression
	ecs_ResultUnion
	ecs_Object
	ecs_Region
	ecs_ObjectAttributeFormat
	ecs_Rasterinfo
	ecs_Category
	ecs_Geometry
	ecs_Area
	ecs_FeatureRing
	ecs_Line
	ecs_Point
	ecs_Text
	ecs_Node
	ecs_Edge
	ecs_AreaPrim
	ecs_Face
	ecs_Coordinate
	ecs_Matrix
	ecs_Image

	 Appendix B �
	Tables
	TABLE 1. list of all valid projection acronyms
	TABLE 2. list of valid ellipsoids
	TABLE 3. list of valid units

	 Appendix C �
	Datum change of the OGDI

	 Appendix D �
	BIBLIOGRAPHY
	 Index

